This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brrpssg | |- ( B e. V -> ( A [C.] B <-> A C. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( B e. V -> B e. _V ) |
|
| 2 | relrpss | |- Rel [C.] |
|
| 3 | 2 | brrelex1i | |- ( A [C.] B -> A e. _V ) |
| 4 | 1 3 | anim12i | |- ( ( B e. V /\ A [C.] B ) -> ( B e. _V /\ A e. _V ) ) |
| 5 | 1 | adantr | |- ( ( B e. V /\ A C. B ) -> B e. _V ) |
| 6 | pssss | |- ( A C. B -> A C_ B ) |
|
| 7 | ssexg | |- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
|
| 8 | 6 1 7 | syl2anr | |- ( ( B e. V /\ A C. B ) -> A e. _V ) |
| 9 | 5 8 | jca | |- ( ( B e. V /\ A C. B ) -> ( B e. _V /\ A e. _V ) ) |
| 10 | psseq1 | |- ( x = A -> ( x C. y <-> A C. y ) ) |
|
| 11 | psseq2 | |- ( y = B -> ( A C. y <-> A C. B ) ) |
|
| 12 | df-rpss | |- [C.] = { <. x , y >. | x C. y } |
|
| 13 | 10 11 12 | brabg | |- ( ( A e. _V /\ B e. _V ) -> ( A [C.] B <-> A C. B ) ) |
| 14 | 13 | ancoms | |- ( ( B e. _V /\ A e. _V ) -> ( A [C.] B <-> A C. B ) ) |
| 15 | 4 9 14 | pm5.21nd | |- ( B e. V -> ( A [C.] B <-> A C. B ) ) |