This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspsstri | |- ( ( A C_ B \/ B C_ A ) <-> ( A C. B \/ A = B \/ B C. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or32 | |- ( ( ( A C. B \/ B C. A ) \/ A = B ) <-> ( ( A C. B \/ A = B ) \/ B C. A ) ) |
|
| 2 | sspss | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |
|
| 3 | sspss | |- ( B C_ A <-> ( B C. A \/ B = A ) ) |
|
| 4 | eqcom | |- ( B = A <-> A = B ) |
|
| 5 | 4 | orbi2i | |- ( ( B C. A \/ B = A ) <-> ( B C. A \/ A = B ) ) |
| 6 | 3 5 | bitri | |- ( B C_ A <-> ( B C. A \/ A = B ) ) |
| 7 | 2 6 | orbi12i | |- ( ( A C_ B \/ B C_ A ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ A = B ) ) ) |
| 8 | orordir | |- ( ( ( A C. B \/ B C. A ) \/ A = B ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ A = B ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( A C_ B \/ B C_ A ) <-> ( ( A C. B \/ B C. A ) \/ A = B ) ) |
| 10 | df-3or | |- ( ( A C. B \/ A = B \/ B C. A ) <-> ( ( A C. B \/ A = B ) \/ B C. A ) ) |
|
| 11 | 1 9 10 | 3bitr4i | |- ( ( A C_ B \/ B C_ A ) <-> ( A C. B \/ A = B \/ B C. A ) ) |