This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd1bas.1 | |- G = ( EndoFMnd ` A ) |
|
| efmnd1bas.2 | |- B = ( Base ` G ) |
||
| efmnd1bas.0 | |- A = { I } |
||
| Assertion | efmnd1bas | |- ( I e. V -> B = { { <. I , I >. } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd1bas.1 | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmnd1bas.2 | |- B = ( Base ` G ) |
|
| 3 | efmnd1bas.0 | |- A = { I } |
|
| 4 | 3 | fveq2i | |- ( EndoFMnd ` A ) = ( EndoFMnd ` { I } ) |
| 5 | 1 4 | eqtri | |- G = ( EndoFMnd ` { I } ) |
| 6 | 5 2 | efmndbas | |- B = ( { I } ^m { I } ) |
| 7 | fsng | |- ( ( I e. V /\ I e. V ) -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
|
| 8 | 7 | anidms | |- ( I e. V -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
| 9 | snex | |- { I } e. _V |
|
| 10 | 9 9 | elmap | |- ( p e. ( { I } ^m { I } ) <-> p : { I } --> { I } ) |
| 11 | velsn | |- ( p e. { { <. I , I >. } } <-> p = { <. I , I >. } ) |
|
| 12 | 8 10 11 | 3bitr4g | |- ( I e. V -> ( p e. ( { I } ^m { I } ) <-> p e. { { <. I , I >. } } ) ) |
| 13 | 12 | eqrdv | |- ( I e. V -> ( { I } ^m { I } ) = { { <. I , I >. } } ) |
| 14 | 6 13 | eqtrid | |- ( I e. V -> B = { { <. I , I >. } } ) |