This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnesn | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } =/= { C } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | |- ( ( A = C /\ B = C ) -> A = B ) |
|
| 2 | 1 | necon3ai | |- ( A =/= B -> -. ( A = C /\ B = C ) ) |
| 3 | 2 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> -. ( A = C /\ B = C ) ) |
| 4 | simp1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> A e. V ) |
|
| 5 | simp2 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> B e. W ) |
|
| 6 | 4 5 | preqsnd | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
| 7 | 6 | necon3abid | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } =/= { C } <-> -. ( A = C /\ B = C ) ) ) |
| 8 | 3 7 | mpbird | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } =/= { C } ) |