This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | |- X = U. J |
|
| Assertion | hmeocls | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) = ( F " ( ( cls ` J ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | |- X = U. J |
|
| 2 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 3 | 1 | cncls2i | |- ( ( `' F e. ( K Cn J ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
| 4 | 2 3 | sylan | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( `' `' F " A ) ) C_ ( `' `' F " ( ( cls ` J ) ` A ) ) ) |
| 5 | imacnvcnv | |- ( `' `' F " A ) = ( F " A ) |
|
| 6 | 5 | fveq2i | |- ( ( cls ` K ) ` ( `' `' F " A ) ) = ( ( cls ` K ) ` ( F " A ) ) |
| 7 | imacnvcnv | |- ( `' `' F " ( ( cls ` J ) ` A ) ) = ( F " ( ( cls ` J ) ` A ) ) |
|
| 8 | 4 6 7 | 3sstr3g | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) C_ ( F " ( ( cls ` J ) ` A ) ) ) |
| 9 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 10 | 1 | cnclsi | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
| 11 | 9 10 | sylan | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( F " ( ( cls ` J ) ` A ) ) C_ ( ( cls ` K ) ` ( F " A ) ) ) |
| 12 | 8 11 | eqssd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( cls ` K ) ` ( F " A ) ) = ( F " ( ( cls ` J ) ` A ) ) ) |