This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pointpsub.p | |- P = ( Points ` K ) |
|
| pointpsub.s | |- S = ( PSubSp ` K ) |
||
| Assertion | pointpsubN | |- ( ( K e. AtLat /\ X e. P ) -> X e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pointpsub.p | |- P = ( Points ` K ) |
|
| 2 | pointpsub.s | |- S = ( PSubSp ` K ) |
|
| 3 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 4 | 3 1 | ispointN | |- ( K e. AtLat -> ( X e. P <-> E. q e. ( Atoms ` K ) X = { q } ) ) |
| 5 | 3 2 | snatpsubN | |- ( ( K e. AtLat /\ q e. ( Atoms ` K ) ) -> { q } e. S ) |
| 6 | 5 | ex | |- ( K e. AtLat -> ( q e. ( Atoms ` K ) -> { q } e. S ) ) |
| 7 | eleq1a | |- ( { q } e. S -> ( X = { q } -> X e. S ) ) |
|
| 8 | 6 7 | syl6 | |- ( K e. AtLat -> ( q e. ( Atoms ` K ) -> ( X = { q } -> X e. S ) ) ) |
| 9 | 8 | rexlimdv | |- ( K e. AtLat -> ( E. q e. ( Atoms ` K ) X = { q } -> X e. S ) ) |
| 10 | 4 9 | sylbid | |- ( K e. AtLat -> ( X e. P -> X e. S ) ) |
| 11 | 10 | imp | |- ( ( K e. AtLat /\ X e. P ) -> X e. S ) |