This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smofvon2 | |- ( Smo F -> ( F ` B ) e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 | |- ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
|
| 2 | 1 | simp1bi | |- ( Smo F -> F : dom F --> On ) |
| 3 | ffvelcdm | |- ( ( F : dom F --> On /\ B e. dom F ) -> ( F ` B ) e. On ) |
|
| 4 | 3 | expcom | |- ( B e. dom F -> ( F : dom F --> On -> ( F ` B ) e. On ) ) |
| 5 | 2 4 | syl5 | |- ( B e. dom F -> ( Smo F -> ( F ` B ) e. On ) ) |
| 6 | ndmfv | |- ( -. B e. dom F -> ( F ` B ) = (/) ) |
|
| 7 | 0elon | |- (/) e. On |
|
| 8 | 6 7 | eqeltrdi | |- ( -. B e. dom F -> ( F ` B ) e. On ) |
| 9 | 8 | a1d | |- ( -. B e. dom F -> ( Smo F -> ( F ` B ) e. On ) ) |
| 10 | 5 9 | pm2.61i | |- ( Smo F -> ( F ` B ) e. On ) |