This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoel2 | |- ( ( ( F Fn A /\ Smo F ) /\ ( B e. A /\ C e. B ) ) -> ( F ` C ) e. ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 2 | 1 | eleq2d | |- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
| 3 | 2 | anbi1d | |- ( F Fn A -> ( ( B e. dom F /\ C e. B ) <-> ( B e. A /\ C e. B ) ) ) |
| 4 | 3 | biimprd | |- ( F Fn A -> ( ( B e. A /\ C e. B ) -> ( B e. dom F /\ C e. B ) ) ) |
| 5 | smoel | |- ( ( Smo F /\ B e. dom F /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) |
|
| 6 | 5 | 3expib | |- ( Smo F -> ( ( B e. dom F /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) ) |
| 7 | 4 6 | sylan9 | |- ( ( F Fn A /\ Smo F ) -> ( ( B e. A /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) ) |
| 8 | 7 | imp | |- ( ( ( F Fn A /\ Smo F ) /\ ( B e. A /\ C e. B ) ) -> ( F ` C ) e. ( F ` B ) ) |