This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smo11 | |- ( ( F : A --> B /\ Smo F ) -> F : A -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : A --> B /\ Smo F ) -> F : A --> B ) |
|
| 2 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 3 | smodm2 | |- ( ( F Fn A /\ Smo F ) -> Ord A ) |
|
| 4 | ordelord | |- ( ( Ord A /\ z e. A ) -> Ord z ) |
|
| 5 | 4 | ex | |- ( Ord A -> ( z e. A -> Ord z ) ) |
| 6 | 3 5 | syl | |- ( ( F Fn A /\ Smo F ) -> ( z e. A -> Ord z ) ) |
| 7 | ordelord | |- ( ( Ord A /\ w e. A ) -> Ord w ) |
|
| 8 | 7 | ex | |- ( Ord A -> ( w e. A -> Ord w ) ) |
| 9 | 3 8 | syl | |- ( ( F Fn A /\ Smo F ) -> ( w e. A -> Ord w ) ) |
| 10 | 6 9 | anim12d | |- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( Ord z /\ Ord w ) ) ) |
| 11 | ordtri3or | |- ( ( Ord z /\ Ord w ) -> ( z e. w \/ z = w \/ w e. z ) ) |
|
| 12 | simp1rr | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> w e. A ) |
|
| 13 | smoel2 | |- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x ) ) -> ( F ` y ) e. ( F ` x ) ) |
|
| 14 | 13 | ralrimivva | |- ( ( F Fn A /\ Smo F ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 15 | 14 | adantr | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 17 | simp2 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z e. w ) |
|
| 18 | simp3 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) |
|
| 19 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 20 | 19 | eleq2d | |- ( x = w -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` w ) ) ) |
| 21 | 20 | raleqbi1dv | |- ( x = w -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. w ( F ` y ) e. ( F ` w ) ) ) |
| 22 | 21 | rspcv | |- ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. w ( F ` y ) e. ( F ` w ) ) ) |
| 23 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 24 | 23 | eleq1d | |- ( y = z -> ( ( F ` y ) e. ( F ` w ) <-> ( F ` z ) e. ( F ` w ) ) ) |
| 25 | 24 | rspccv | |- ( A. y e. w ( F ` y ) e. ( F ` w ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) |
| 26 | 22 25 | syl6 | |- ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) ) |
| 27 | 26 | 3imp | |- ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) -> ( F ` z ) e. ( F ` w ) ) |
| 28 | eleq1 | |- ( ( F ` z ) = ( F ` w ) -> ( ( F ` z ) e. ( F ` w ) <-> ( F ` w ) e. ( F ` w ) ) ) |
|
| 29 | 28 | biimpac | |- ( ( ( F ` z ) e. ( F ` w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 30 | 27 29 | sylan | |- ( ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 31 | 12 16 17 18 30 | syl31anc | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 32 | smofvon2 | |- ( Smo F -> ( F ` w ) e. On ) |
|
| 33 | eloni | |- ( ( F ` w ) e. On -> Ord ( F ` w ) ) |
|
| 34 | ordirr | |- ( Ord ( F ` w ) -> -. ( F ` w ) e. ( F ` w ) ) |
|
| 35 | 32 33 34 | 3syl | |- ( Smo F -> -. ( F ` w ) e. ( F ` w ) ) |
| 36 | 35 | ad2antlr | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 37 | 36 | 3ad2ant1 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 38 | 31 37 | pm2.21dd | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z = w ) |
| 39 | 38 | 3exp | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z e. w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 40 | ax-1 | |- ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
|
| 41 | 40 | a1i | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 42 | simp1rl | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z e. A ) |
|
| 43 | 15 | 3ad2ant1 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 44 | simp2 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> w e. z ) |
|
| 45 | simp3 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) |
|
| 46 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 47 | 46 | eleq2d | |- ( x = z -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` z ) ) ) |
| 48 | 47 | raleqbi1dv | |- ( x = z -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. z ( F ` y ) e. ( F ` z ) ) ) |
| 49 | 48 | rspcv | |- ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. z ( F ` y ) e. ( F ` z ) ) ) |
| 50 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 51 | 50 | eleq1d | |- ( y = w -> ( ( F ` y ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` z ) ) ) |
| 52 | 51 | rspccv | |- ( A. y e. z ( F ` y ) e. ( F ` z ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) |
| 53 | 49 52 | syl6 | |- ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) ) |
| 54 | 53 | 3imp | |- ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) -> ( F ` w ) e. ( F ` z ) ) |
| 55 | eleq2 | |- ( ( F ` z ) = ( F ` w ) -> ( ( F ` w ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` w ) ) ) |
|
| 56 | 55 | biimpac | |- ( ( ( F ` w ) e. ( F ` z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 57 | 54 56 | sylan | |- ( ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 58 | 42 43 44 45 57 | syl31anc | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 59 | 36 | 3ad2ant1 | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 60 | 58 59 | pm2.21dd | |- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z = w ) |
| 61 | 60 | 3exp | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( w e. z -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 62 | 39 41 61 | 3jaod | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( z e. w \/ z = w \/ w e. z ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 63 | 11 62 | syl5 | |- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 64 | 63 | ex | |- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) ) |
| 65 | 10 64 | mpdd | |- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 66 | 65 | ralrimivv | |- ( ( F Fn A /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 67 | 2 66 | sylan | |- ( ( F : A --> B /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 68 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
|
| 69 | 1 67 68 | sylanbrc | |- ( ( F : A --> B /\ Smo F ) -> F : A -1-1-> B ) |