This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a strictly monotone ordinal function. Definition 7.46 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 15-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-smo | |- ( Smo A <-> ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | 0 | wsmo | |- Smo A |
| 2 | 0 | cdm | |- dom A |
| 3 | con0 | |- On |
|
| 4 | 2 3 0 | wf | |- A : dom A --> On |
| 5 | 2 | word | |- Ord dom A |
| 6 | vx | |- x |
|
| 7 | vy | |- y |
|
| 8 | 6 | cv | |- x |
| 9 | 7 | cv | |- y |
| 10 | 8 9 | wcel | |- x e. y |
| 11 | 8 0 | cfv | |- ( A ` x ) |
| 12 | 9 0 | cfv | |- ( A ` y ) |
| 13 | 11 12 | wcel | |- ( A ` x ) e. ( A ` y ) |
| 14 | 10 13 | wi | |- ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 15 | 14 7 2 | wral | |- A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 16 | 15 6 2 | wral | |- A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 17 | 4 5 16 | w3a | |- ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) |
| 18 | 1 17 | wb | |- ( Smo A <-> ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) ) |