This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| Assertion | smndex1gbas | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) e. ( Base ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | elfzonn0 | |- ( K e. ( 0 ..^ N ) -> K e. NN0 ) |
|
| 6 | 5 | adantr | |- ( ( K e. ( 0 ..^ N ) /\ x e. NN0 ) -> K e. NN0 ) |
| 7 | 6 | ralrimiva | |- ( K e. ( 0 ..^ N ) -> A. x e. NN0 K e. NN0 ) |
| 8 | eqid | |- ( x e. NN0 |-> K ) = ( x e. NN0 |-> K ) |
|
| 9 | 8 | fmpt | |- ( A. x e. NN0 K e. NN0 <-> ( x e. NN0 |-> K ) : NN0 --> NN0 ) |
| 10 | 7 9 | sylib | |- ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) : NN0 --> NN0 ) |
| 11 | nn0ex | |- NN0 e. _V |
|
| 12 | 11 11 | elmap | |- ( ( x e. NN0 |-> K ) e. ( NN0 ^m NN0 ) <-> ( x e. NN0 |-> K ) : NN0 --> NN0 ) |
| 13 | 10 12 | sylibr | |- ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) e. ( NN0 ^m NN0 ) ) |
| 14 | 4 | a1i | |- ( K e. ( 0 ..^ N ) -> G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) ) |
| 15 | id | |- ( n = K -> n = K ) |
|
| 16 | 15 | mpteq2dv | |- ( n = K -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) |
| 17 | 16 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ n = K ) -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) |
| 18 | id | |- ( K e. ( 0 ..^ N ) -> K e. ( 0 ..^ N ) ) |
|
| 19 | 11 | mptex | |- ( x e. NN0 |-> K ) e. _V |
| 20 | 19 | a1i | |- ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) e. _V ) |
| 21 | 14 17 18 20 | fvmptd | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) |
| 22 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 23 | 1 22 | efmndbas | |- ( Base ` M ) = ( NN0 ^m NN0 ) |
| 24 | 23 | a1i | |- ( K e. ( 0 ..^ N ) -> ( Base ` M ) = ( NN0 ^m NN0 ) ) |
| 25 | 13 21 24 | 3eltr4d | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) e. ( Base ` M ) ) |