This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sinper and cosper . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sinperlem.1 | |- ( A e. CC -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
|
| sinperlem.2 | |- ( ( A + ( K x. ( 2 x. _pi ) ) ) e. CC -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
||
| Assertion | sinperlem | |- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinperlem.1 | |- ( A e. CC -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
|
| 2 | sinperlem.2 | |- ( ( A + ( K x. ( 2 x. _pi ) ) ) e. CC -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
|
| 3 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 4 | 2cn | |- 2 e. CC |
|
| 5 | picn | |- _pi e. CC |
|
| 6 | 4 5 | mulcli | |- ( 2 x. _pi ) e. CC |
| 7 | mulcl | |- ( ( K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( K x. ( 2 x. _pi ) ) e. CC ) |
|
| 8 | 3 6 7 | sylancl | |- ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) e. CC ) |
| 9 | ax-icn | |- _i e. CC |
|
| 10 | adddi | |- ( ( _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
|
| 11 | 9 10 | mp3an1 | |- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 12 | 8 11 | sylan2 | |- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 13 | mul12 | |- ( ( _i e. CC /\ K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
|
| 14 | 9 6 13 | mp3an13 | |- ( K e. CC -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 15 | 3 14 | syl | |- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 16 | 9 6 | mulcli | |- ( _i x. ( 2 x. _pi ) ) e. CC |
| 17 | mulcom | |- ( ( K e. CC /\ ( _i x. ( 2 x. _pi ) ) e. CC ) -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
|
| 18 | 3 16 17 | sylancl | |- ( K e. ZZ -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 19 | 15 18 | eqtrd | |- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 20 | 19 | adantl | |- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 21 | 20 | oveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
| 22 | 12 21 | eqtrd | |- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
| 23 | 22 | fveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) |
| 24 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 25 | 9 24 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 26 | efper | |- ( ( ( _i x. A ) e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
|
| 27 | 25 26 | sylan | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 28 | 23 27 | eqtrd | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 29 | negicn | |- -u _i e. CC |
|
| 30 | adddi | |- ( ( -u _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
|
| 31 | 29 30 | mp3an1 | |- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 32 | 8 31 | sylan2 | |- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 33 | 19 | negeqd | |- ( K e. ZZ -> -u ( _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 34 | mulneg1 | |- ( ( _i e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
|
| 35 | 9 8 34 | sylancr | |- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
| 36 | mulneg2 | |- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
|
| 37 | 16 3 36 | sylancr | |- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 38 | 33 35 37 | 3eqtr4d | |- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
| 39 | 38 | adantl | |- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
| 40 | 39 | oveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
| 41 | 32 40 | eqtrd | |- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
| 42 | 41 | fveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) ) |
| 43 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 44 | 29 43 | mpan | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 45 | znegcl | |- ( K e. ZZ -> -u K e. ZZ ) |
|
| 46 | efper | |- ( ( ( -u _i x. A ) e. CC /\ -u K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
|
| 47 | 44 45 46 | syl2an | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 48 | 42 47 | eqtrd | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 49 | 28 48 | oveq12d | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) ) |
| 50 | 49 | oveq1d | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
| 51 | addcl | |- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
|
| 52 | 8 51 | sylan2 | |- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
| 53 | 52 2 | syl | |- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
| 54 | 1 | adantr | |- ( ( A e. CC /\ K e. ZZ ) -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
| 55 | 50 53 54 | 3eqtr4d | |- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( F ` A ) ) |