This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efper | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( A + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | picn | |- _pi e. CC |
|
| 4 | 2 3 | mulcli | |- ( 2 x. _pi ) e. CC |
| 5 | 1 4 | mulcli | |- ( _i x. ( 2 x. _pi ) ) e. CC |
| 6 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 7 | mulcl | |- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. K ) e. CC ) |
|
| 8 | 5 6 7 | sylancr | |- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. K ) e. CC ) |
| 9 | efadd | |- ( ( A e. CC /\ ( ( _i x. ( 2 x. _pi ) ) x. K ) e. CC ) -> ( exp ` ( A + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( ( exp ` A ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( A + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( ( exp ` A ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) |
| 11 | ef2kpi | |- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = 1 ) |
|
| 12 | 11 | oveq2d | |- ( K e. ZZ -> ( ( exp ` A ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( ( exp ` A ) x. 1 ) ) |
| 13 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 14 | 13 | mulridd | |- ( A e. CC -> ( ( exp ` A ) x. 1 ) = ( exp ` A ) ) |
| 15 | 12 14 | sylan9eqr | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( exp ` A ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` A ) ) |
| 16 | 10 15 | eqtrd | |- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( A + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` A ) ) |