This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function is an inverse to sin . This is the main property that justifies the notation arcsin or sin ^ -u 1 . Because sin is not an injection, the other converse identity asinsin is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinasin | |- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl | |- ( A e. CC -> ( arcsin ` A ) e. CC ) |
|
| 2 | sinval | |- ( ( arcsin ` A ) e. CC -> ( sin ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / ( 2 x. _i ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / ( 2 x. _i ) ) ) |
| 4 | ax-icn | |- _i e. CC |
|
| 5 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 6 | 4 5 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 7 | 6 | negcld | |- ( A e. CC -> -u ( _i x. A ) e. CC ) |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 10 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 11 | 8 9 10 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 12 | 11 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 13 | 6 7 12 | pnpcan2d | |- ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) - ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. A ) - -u ( _i x. A ) ) ) |
| 14 | efiasin | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
|
| 15 | mulneg12 | |- ( ( _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
|
| 16 | 4 1 15 | sylancr | |- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 17 | asinneg | |- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
|
| 18 | 17 | oveq2d | |- ( A e. CC -> ( _i x. ( arcsin ` -u A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 19 | 16 18 | eqtr4d | |- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. ( arcsin ` -u A ) ) ) |
| 20 | 19 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( exp ` ( _i x. ( arcsin ` -u A ) ) ) ) |
| 21 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 22 | efiasin | |- ( -u A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 24 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 25 | 4 24 | mpan | |- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 26 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 27 | 26 | oveq2d | |- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) |
| 28 | 27 | fveq2d | |- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 29 | 25 28 | oveq12d | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 30 | 20 23 29 | 3eqtrd | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 31 | 14 30 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) - ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 32 | 6 | 2timesd | |- ( A e. CC -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 33 | 2cn | |- 2 e. CC |
|
| 34 | mulass | |- ( ( 2 e. CC /\ _i e. CC /\ A e. CC ) -> ( ( 2 x. _i ) x. A ) = ( 2 x. ( _i x. A ) ) ) |
|
| 35 | 33 4 34 | mp3an12 | |- ( A e. CC -> ( ( 2 x. _i ) x. A ) = ( 2 x. ( _i x. A ) ) ) |
| 36 | 6 6 | subnegd | |- ( A e. CC -> ( ( _i x. A ) - -u ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 37 | 32 35 36 | 3eqtr4d | |- ( A e. CC -> ( ( 2 x. _i ) x. A ) = ( ( _i x. A ) - -u ( _i x. A ) ) ) |
| 38 | 13 31 37 | 3eqtr4d | |- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( 2 x. _i ) x. A ) ) |
| 39 | mulcl | |- ( ( _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( _i x. ( arcsin ` A ) ) e. CC ) |
|
| 40 | 4 1 39 | sylancr | |- ( A e. CC -> ( _i x. ( arcsin ` A ) ) e. CC ) |
| 41 | efcl | |- ( ( _i x. ( arcsin ` A ) ) e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) e. CC ) |
|
| 42 | 40 41 | syl | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) e. CC ) |
| 43 | negicn | |- -u _i e. CC |
|
| 44 | mulcl | |- ( ( -u _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( -u _i x. ( arcsin ` A ) ) e. CC ) |
|
| 45 | 43 1 44 | sylancr | |- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) e. CC ) |
| 46 | efcl | |- ( ( -u _i x. ( arcsin ` A ) ) e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) e. CC ) |
|
| 47 | 45 46 | syl | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) e. CC ) |
| 48 | 42 47 | subcld | |- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) e. CC ) |
| 49 | id | |- ( A e. CC -> A e. CC ) |
|
| 50 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 51 | 50 | a1i | |- ( A e. CC -> ( 2 x. _i ) e. CC ) |
| 52 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 53 | 52 | a1i | |- ( A e. CC -> ( 2 x. _i ) =/= 0 ) |
| 54 | 48 49 51 53 | divmul2d | |- ( A e. CC -> ( ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / ( 2 x. _i ) ) = A <-> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( 2 x. _i ) x. A ) ) ) |
| 55 | 38 54 | mpbird | |- ( A e. CC -> ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) - ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / ( 2 x. _i ) ) = A ) |
| 56 | 3 55 | eqtrd | |- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = A ) |