This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosacos | |- ( A e. CC -> ( cos ` ( arccos ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval | |- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( cos ` ( arccos ` A ) ) = ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
| 3 | asincl | |- ( A e. CC -> ( arcsin ` A ) e. CC ) |
|
| 4 | coshalfpim | |- ( ( arcsin ` A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( sin ` ( arcsin ` A ) ) ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( sin ` ( arcsin ` A ) ) ) |
| 6 | sinasin | |- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = A ) |
|
| 7 | 2 5 6 | 3eqtrd | |- ( A e. CC -> ( cos ` ( arccos ` A ) ) = A ) |