This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of Beran p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999) (Proof shortened by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chocuni.1 | |- H e. CH |
|
| Assertion | chocunii | |- ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) -> ( ( R = ( A +h B ) /\ R = ( C +h D ) ) -> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chocuni.1 | |- H e. CH |
|
| 2 | 1 | chshii | |- H e. SH |
| 3 | 2 | a1i | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> H e. SH ) |
| 4 | shocsh | |- ( H e. SH -> ( _|_ ` H ) e. SH ) |
|
| 5 | 2 4 | mp1i | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( _|_ ` H ) e. SH ) |
| 6 | ocin | |- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
|
| 7 | 2 6 | mp1i | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( H i^i ( _|_ ` H ) ) = 0H ) |
| 8 | simplll | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> A e. H ) |
|
| 9 | simpllr | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> B e. ( _|_ ` H ) ) |
|
| 10 | simplrl | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> C e. H ) |
|
| 11 | simplrr | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> D e. ( _|_ ` H ) ) |
|
| 12 | eqtr2 | |- ( ( R = ( A +h B ) /\ R = ( C +h D ) ) -> ( A +h B ) = ( C +h D ) ) |
|
| 13 | 12 | adantl | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( A +h B ) = ( C +h D ) ) |
| 14 | 3 5 7 8 9 10 11 13 | shuni | |- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( A = C /\ B = D ) ) |
| 15 | 14 | ex | |- ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) -> ( ( R = ( A +h B ) /\ R = ( C +h D ) ) -> ( A = C /\ B = D ) ) ) |