This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shintcl | |- ( ( A C_ SH /\ A =/= (/) ) -> |^| A e. SH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq | |- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> |^| A = |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) ) |
|
| 2 | 1 | eleq1d | |- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( |^| A e. SH <-> |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH ) ) |
| 3 | sseq1 | |- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) ) |
|
| 4 | neeq1 | |- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) |
|
| 5 | 3 4 | anbi12d | |- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( A C_ SH /\ A =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) ) |
| 6 | sseq1 | |- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) ) |
|
| 7 | neeq1 | |- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) |
|
| 8 | 6 7 | anbi12d | |- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( SH C_ SH /\ SH =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) ) |
| 9 | ssid | |- SH C_ SH |
|
| 10 | h0elsh | |- 0H e. SH |
|
| 11 | 10 | ne0ii | |- SH =/= (/) |
| 12 | 9 11 | pm3.2i | |- ( SH C_ SH /\ SH =/= (/) ) |
| 13 | 5 8 12 | elimhyp | |- ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) |
| 14 | 13 | shintcli | |- |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH |
| 15 | 2 14 | dedth | |- ( ( A C_ SH /\ A =/= (/) ) -> |^| A e. SH ) |