This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013) (Revised by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovelimab | |- ( ( F Fn A /\ ( B X. C ) C_ A ) -> ( D e. ( F " ( B X. C ) ) <-> E. x e. B E. y e. C D = ( x F y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimab | |- ( ( F Fn A /\ ( B X. C ) C_ A ) -> ( D e. ( F " ( B X. C ) ) <-> E. z e. ( B X. C ) ( F ` z ) = D ) ) |
|
| 2 | fveq2 | |- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 2 3 | eqtr4di | |- ( z = <. x , y >. -> ( F ` z ) = ( x F y ) ) |
| 5 | 4 | eqeq1d | |- ( z = <. x , y >. -> ( ( F ` z ) = D <-> ( x F y ) = D ) ) |
| 6 | eqcom | |- ( ( x F y ) = D <-> D = ( x F y ) ) |
|
| 7 | 5 6 | bitrdi | |- ( z = <. x , y >. -> ( ( F ` z ) = D <-> D = ( x F y ) ) ) |
| 8 | 7 | rexxp | |- ( E. z e. ( B X. C ) ( F ` z ) = D <-> E. x e. B E. y e. C D = ( x F y ) ) |
| 9 | 1 8 | bitrdi | |- ( ( F Fn A /\ ( B X. C ) C_ A ) -> ( D e. ( F " ( B X. C ) ) <-> E. x e. B E. y e. C D = ( x F y ) ) ) |