This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftf | |- ( ( F : B --> C /\ A e. CC ) -> ( F shift A ) : { x e. CC | ( x - A ) e. B } --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | ffn | |- ( F : B --> C -> F Fn B ) |
|
| 3 | 1 | shftfn | |- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |
| 4 | 2 3 | sylan | |- ( ( F : B --> C /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |
| 5 | oveq1 | |- ( x = y -> ( x - A ) = ( y - A ) ) |
|
| 6 | 5 | eleq1d | |- ( x = y -> ( ( x - A ) e. B <-> ( y - A ) e. B ) ) |
| 7 | 6 | elrab | |- ( y e. { x e. CC | ( x - A ) e. B } <-> ( y e. CC /\ ( y - A ) e. B ) ) |
| 8 | simpr | |- ( ( F : B --> C /\ A e. CC ) -> A e. CC ) |
|
| 9 | simpl | |- ( ( y e. CC /\ ( y - A ) e. B ) -> y e. CC ) |
|
| 10 | 1 | shftval | |- ( ( A e. CC /\ y e. CC ) -> ( ( F shift A ) ` y ) = ( F ` ( y - A ) ) ) |
| 11 | 8 9 10 | syl2an | |- ( ( ( F : B --> C /\ A e. CC ) /\ ( y e. CC /\ ( y - A ) e. B ) ) -> ( ( F shift A ) ` y ) = ( F ` ( y - A ) ) ) |
| 12 | simpl | |- ( ( F : B --> C /\ A e. CC ) -> F : B --> C ) |
|
| 13 | simpr | |- ( ( y e. CC /\ ( y - A ) e. B ) -> ( y - A ) e. B ) |
|
| 14 | ffvelcdm | |- ( ( F : B --> C /\ ( y - A ) e. B ) -> ( F ` ( y - A ) ) e. C ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( ( F : B --> C /\ A e. CC ) /\ ( y e. CC /\ ( y - A ) e. B ) ) -> ( F ` ( y - A ) ) e. C ) |
| 16 | 11 15 | eqeltrd | |- ( ( ( F : B --> C /\ A e. CC ) /\ ( y e. CC /\ ( y - A ) e. B ) ) -> ( ( F shift A ) ` y ) e. C ) |
| 17 | 7 16 | sylan2b | |- ( ( ( F : B --> C /\ A e. CC ) /\ y e. { x e. CC | ( x - A ) e. B } ) -> ( ( F shift A ) ` y ) e. C ) |
| 18 | 17 | ralrimiva | |- ( ( F : B --> C /\ A e. CC ) -> A. y e. { x e. CC | ( x - A ) e. B } ( ( F shift A ) ` y ) e. C ) |
| 19 | ffnfv | |- ( ( F shift A ) : { x e. CC | ( x - A ) e. B } --> C <-> ( ( F shift A ) Fn { x e. CC | ( x - A ) e. B } /\ A. y e. { x e. CC | ( x - A ) e. B } ( ( F shift A ) ` y ) e. C ) ) |
|
| 20 | 4 18 19 | sylanbrc | |- ( ( F : B --> C /\ A e. CC ) -> ( F shift A ) : { x e. CC | ( x - A ) e. B } --> C ) |