This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | 2shfti | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) shift B ) = ( F shift ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | 1 | shftfval | |- ( A e. CC -> ( F shift A ) = { <. z , w >. | ( z e. CC /\ ( z - A ) F w ) } ) |
| 3 | 2 | breqd | |- ( A e. CC -> ( ( x - B ) ( F shift A ) y <-> ( x - B ) { <. z , w >. | ( z e. CC /\ ( z - A ) F w ) } y ) ) |
| 4 | ovex | |- ( x - B ) e. _V |
|
| 5 | vex | |- y e. _V |
|
| 6 | eleq1 | |- ( z = ( x - B ) -> ( z e. CC <-> ( x - B ) e. CC ) ) |
|
| 7 | oveq1 | |- ( z = ( x - B ) -> ( z - A ) = ( ( x - B ) - A ) ) |
|
| 8 | 7 | breq1d | |- ( z = ( x - B ) -> ( ( z - A ) F w <-> ( ( x - B ) - A ) F w ) ) |
| 9 | 6 8 | anbi12d | |- ( z = ( x - B ) -> ( ( z e. CC /\ ( z - A ) F w ) <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F w ) ) ) |
| 10 | breq2 | |- ( w = y -> ( ( ( x - B ) - A ) F w <-> ( ( x - B ) - A ) F y ) ) |
|
| 11 | 10 | anbi2d | |- ( w = y -> ( ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F w ) <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 12 | eqid | |- { <. z , w >. | ( z e. CC /\ ( z - A ) F w ) } = { <. z , w >. | ( z e. CC /\ ( z - A ) F w ) } |
|
| 13 | 4 5 9 11 12 | brab | |- ( ( x - B ) { <. z , w >. | ( z e. CC /\ ( z - A ) F w ) } y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) |
| 14 | 3 13 | bitrdi | |- ( A e. CC -> ( ( x - B ) ( F shift A ) y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 15 | 14 | ad2antrr | |- ( ( ( A e. CC /\ B e. CC ) /\ x e. CC ) -> ( ( x - B ) ( F shift A ) y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 16 | subcl | |- ( ( x e. CC /\ B e. CC ) -> ( x - B ) e. CC ) |
|
| 17 | 16 | biantrurd | |- ( ( x e. CC /\ B e. CC ) -> ( ( ( x - B ) - A ) F y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 18 | 17 | ancoms | |- ( ( B e. CC /\ x e. CC ) -> ( ( ( x - B ) - A ) F y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 19 | 18 | adantll | |- ( ( ( A e. CC /\ B e. CC ) /\ x e. CC ) -> ( ( ( x - B ) - A ) F y <-> ( ( x - B ) e. CC /\ ( ( x - B ) - A ) F y ) ) ) |
| 20 | sub32 | |- ( ( x e. CC /\ A e. CC /\ B e. CC ) -> ( ( x - A ) - B ) = ( ( x - B ) - A ) ) |
|
| 21 | subsub4 | |- ( ( x e. CC /\ A e. CC /\ B e. CC ) -> ( ( x - A ) - B ) = ( x - ( A + B ) ) ) |
|
| 22 | 20 21 | eqtr3d | |- ( ( x e. CC /\ A e. CC /\ B e. CC ) -> ( ( x - B ) - A ) = ( x - ( A + B ) ) ) |
| 23 | 22 | 3expb | |- ( ( x e. CC /\ ( A e. CC /\ B e. CC ) ) -> ( ( x - B ) - A ) = ( x - ( A + B ) ) ) |
| 24 | 23 | ancoms | |- ( ( ( A e. CC /\ B e. CC ) /\ x e. CC ) -> ( ( x - B ) - A ) = ( x - ( A + B ) ) ) |
| 25 | 24 | breq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ x e. CC ) -> ( ( ( x - B ) - A ) F y <-> ( x - ( A + B ) ) F y ) ) |
| 26 | 15 19 25 | 3bitr2d | |- ( ( ( A e. CC /\ B e. CC ) /\ x e. CC ) -> ( ( x - B ) ( F shift A ) y <-> ( x - ( A + B ) ) F y ) ) |
| 27 | 26 | pm5.32da | |- ( ( A e. CC /\ B e. CC ) -> ( ( x e. CC /\ ( x - B ) ( F shift A ) y ) <-> ( x e. CC /\ ( x - ( A + B ) ) F y ) ) ) |
| 28 | 27 | opabbidv | |- ( ( A e. CC /\ B e. CC ) -> { <. x , y >. | ( x e. CC /\ ( x - B ) ( F shift A ) y ) } = { <. x , y >. | ( x e. CC /\ ( x - ( A + B ) ) F y ) } ) |
| 29 | ovex | |- ( F shift A ) e. _V |
|
| 30 | 29 | shftfval | |- ( B e. CC -> ( ( F shift A ) shift B ) = { <. x , y >. | ( x e. CC /\ ( x - B ) ( F shift A ) y ) } ) |
| 31 | 30 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) shift B ) = { <. x , y >. | ( x e. CC /\ ( x - B ) ( F shift A ) y ) } ) |
| 32 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 33 | 1 | shftfval | |- ( ( A + B ) e. CC -> ( F shift ( A + B ) ) = { <. x , y >. | ( x e. CC /\ ( x - ( A + B ) ) F y ) } ) |
| 34 | 32 33 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( F shift ( A + B ) ) = { <. x , y >. | ( x e. CC /\ ( x - ( A + B ) ) F y ) } ) |
| 35 | 28 31 34 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) shift B ) = ( F shift ( A + B ) ) ) |