This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftf | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ 𝐶 → 𝐹 Fn 𝐵 ) | |
| 3 | 1 | shftfn | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝐴 ) = ( 𝑦 − 𝐴 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 ↔ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) ) |
| 7 | 6 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) ) |
| 8 | simpr | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 9 | simpl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) → 𝑦 ∈ ℂ ) | |
| 10 | 1 | shftval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 − 𝐴 ) ) ) |
| 11 | 8 9 10 | syl2an | ⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦 − 𝐴 ) ) ) |
| 12 | simpl | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 13 | simpr | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) → ( 𝑦 − 𝐴 ) ∈ 𝐵 ) | |
| 14 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦 − 𝐴 ) ) ∈ 𝐶 ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 − 𝐴 ) ) ∈ 𝐶 ) |
| 16 | 11 15 | eqeltrd | ⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦 − 𝐴 ) ∈ 𝐵 ) ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 ) |
| 17 | 7 16 | sylan2b | ⊢ ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) ∧ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 ) |
| 18 | 17 | ralrimiva | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → ∀ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 ) |
| 19 | ffnfv | ⊢ ( ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ⟶ 𝐶 ↔ ( ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 ) ) | |
| 20 | 4 18 19 | sylanbrc | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ⟶ 𝐶 ) |