This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsstruct2 | |- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2 | |- ( G Struct X <-> ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) ) |
|
| 2 | elin | |- ( X e. ( <_ i^i ( NN X. NN ) ) <-> ( X e. <_ /\ X e. ( NN X. NN ) ) ) |
|
| 3 | elxp6 | |- ( X e. ( NN X. NN ) <-> ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) ) |
|
| 4 | eleq1 | |- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( X e. <_ <-> <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ ) ) |
|
| 5 | 4 | adantr | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( X e. <_ <-> <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ ) ) |
| 6 | simp3 | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I e. NN ) |
|
| 7 | simp1l | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( 1st ` X ) e. NN ) |
|
| 8 | 6 7 | ifcld | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) e. NN ) |
| 9 | 8 | nnred | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) e. RR ) |
| 10 | 6 | nnred | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I e. RR ) |
| 11 | simp1r | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( 2nd ` X ) e. NN ) |
|
| 12 | 11 6 | ifcld | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) e. NN ) |
| 13 | 12 | nnred | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) e. RR ) |
| 14 | nnre | |- ( ( 1st ` X ) e. NN -> ( 1st ` X ) e. RR ) |
|
| 15 | 14 | adantr | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( 1st ` X ) e. RR ) |
| 16 | nnre | |- ( I e. NN -> I e. RR ) |
|
| 17 | 15 16 | anim12i | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( ( 1st ` X ) e. RR /\ I e. RR ) ) |
| 18 | 17 | 3adant2 | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( ( 1st ` X ) e. RR /\ I e. RR ) ) |
| 19 | 18 | ancomd | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( I e. RR /\ ( 1st ` X ) e. RR ) ) |
| 20 | min1 | |- ( ( I e. RR /\ ( 1st ` X ) e. RR ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ I ) |
|
| 21 | 19 20 | syl | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ I ) |
| 22 | nnre | |- ( ( 2nd ` X ) e. NN -> ( 2nd ` X ) e. RR ) |
|
| 23 | 22 | adantl | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( 2nd ` X ) e. RR ) |
| 24 | 23 16 | anim12i | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( ( 2nd ` X ) e. RR /\ I e. RR ) ) |
| 25 | 24 | 3adant2 | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( ( 2nd ` X ) e. RR /\ I e. RR ) ) |
| 26 | 25 | ancomd | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> ( I e. RR /\ ( 2nd ` X ) e. RR ) ) |
| 27 | max1 | |- ( ( I e. RR /\ ( 2nd ` X ) e. RR ) -> I <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
|
| 28 | 26 27 | syl | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> I <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
| 29 | 9 10 13 21 28 | letrd | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) |
| 30 | df-br | |- ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) <_ if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) <-> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. <_ ) |
|
| 31 | 29 30 | sylib | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. <_ ) |
| 32 | 8 12 | opelxpd | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( NN X. NN ) ) |
| 33 | 31 32 | elind | |- ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 34 | 33 | 3exp | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 35 | 34 | adantl | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( <. ( 1st ` X ) , ( 2nd ` X ) >. e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 36 | 5 35 | sylbid | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( X e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 37 | 3 36 | sylbi | |- ( X e. ( NN X. NN ) -> ( X e. <_ -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) ) |
| 38 | 37 | impcom | |- ( ( X e. <_ /\ X e. ( NN X. NN ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 39 | 2 38 | sylbi | |- ( X e. ( <_ i^i ( NN X. NN ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 41 | 1 40 | sylbi | |- ( G Struct X -> ( I e. NN -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) ) |
| 42 | 41 | imp | |- ( ( G Struct X /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 43 | 42 | 3adant2 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 44 | structex | |- ( G Struct X -> G e. _V ) |
|
| 45 | structn0fun | |- ( G Struct X -> Fun ( G \ { (/) } ) ) |
|
| 46 | 44 45 | jca | |- ( G Struct X -> ( G e. _V /\ Fun ( G \ { (/) } ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( G e. _V /\ Fun ( G \ { (/) } ) ) ) |
| 48 | simp3 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> I e. NN ) |
|
| 49 | simp2 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> E e. V ) |
|
| 50 | setsfun0 | |- ( ( ( G e. _V /\ Fun ( G \ { (/) } ) ) /\ ( I e. NN /\ E e. V ) ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
|
| 51 | 47 48 49 50 | syl12anc | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
| 52 | 44 | 3ad2ant1 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> G e. _V ) |
| 53 | setsdm | |- ( ( G e. _V /\ E e. V ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |
|
| 54 | 52 49 53 | syl2anc | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |
| 55 | fveq2 | |- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( ... ` X ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) ) |
|
| 56 | df-ov | |- ( ( 1st ` X ) ... ( 2nd ` X ) ) = ( ... ` <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
|
| 57 | 55 56 | eqtr4di | |- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( ... ` X ) = ( ( 1st ` X ) ... ( 2nd ` X ) ) ) |
| 58 | 57 | sseq2d | |- ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. -> ( dom G C_ ( ... ` X ) <-> dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) ) ) |
| 59 | 58 | adantr | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ... ` X ) <-> dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) ) ) |
| 60 | df-3an | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) <-> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) ) |
|
| 61 | nnz | |- ( ( 1st ` X ) e. NN -> ( 1st ` X ) e. ZZ ) |
|
| 62 | nnz | |- ( ( 2nd ` X ) e. NN -> ( 2nd ` X ) e. ZZ ) |
|
| 63 | nnz | |- ( I e. NN -> I e. ZZ ) |
|
| 64 | 61 62 63 | 3anim123i | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) -> ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) |
| 65 | ssfzunsnext | |- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) -> ( dom G u. { I } ) C_ ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) ... if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) ) |
|
| 66 | df-ov | |- ( if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) ... if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) ) = ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
|
| 67 | 65 66 | sseqtrdi | |- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. ZZ /\ ( 2nd ` X ) e. ZZ /\ I e. ZZ ) ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 68 | 64 67 | sylan2 | |- ( ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 69 | 68 | ex | |- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 70 | 60 69 | biimtrrid | |- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 71 | 70 | expd | |- ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 72 | 71 | com12 | |- ( ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) -> ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 73 | 72 | adantl | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ( 1st ` X ) ... ( 2nd ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 74 | 59 73 | sylbid | |- ( ( X = <. ( 1st ` X ) , ( 2nd ` X ) >. /\ ( ( 1st ` X ) e. NN /\ ( 2nd ` X ) e. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 75 | 3 74 | sylbi | |- ( X e. ( NN X. NN ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 76 | 75 | adantl | |- ( ( X e. <_ /\ X e. ( NN X. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 77 | 2 76 | sylbi | |- ( X e. ( <_ i^i ( NN X. NN ) ) -> ( dom G C_ ( ... ` X ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) ) |
| 78 | 77 | imp | |- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 79 | 78 | 3adant2 | |- ( ( X e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( ... ` X ) ) -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 80 | 1 79 | sylbi | |- ( G Struct X -> ( I e. NN -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
| 81 | 80 | imp | |- ( ( G Struct X /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 82 | 81 | 3adant2 | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( dom G u. { I } ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 83 | 54 82 | eqsstrd | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> dom ( G sSet <. I , E >. ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 84 | isstruct2 | |- ( ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. <-> ( <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( ( G sSet <. I , E >. ) \ { (/) } ) /\ dom ( G sSet <. I , E >. ) C_ ( ... ` <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) ) |
|
| 85 | 43 51 83 84 | syl3anbrc | |- ( ( G Struct X /\ E e. V /\ I e. NN ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
| 86 | 85 | adantr | |- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) |
| 87 | breq2 | |- ( Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. -> ( ( G sSet <. I , E >. ) Struct Y <-> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
|
| 88 | 87 | adantl | |- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( ( G sSet <. I , E >. ) Struct Y <-> ( G sSet <. I , E >. ) Struct <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) ) |
| 89 | 86 88 | mpbird | |- ( ( ( G Struct X /\ E e. V /\ I e. NN ) /\ Y = <. if ( I <_ ( 1st ` X ) , I , ( 1st ` X ) ) , if ( I <_ ( 2nd ` X ) , ( 2nd ` X ) , I ) >. ) -> ( G sSet <. I , E >. ) Struct Y ) |