This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
||
| setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
||
| setsms.m | |- ( ph -> M e. V ) |
||
| Assertion | setsmstset | |- ( ph -> ( MetOpen ` D ) = ( TopSet ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| 2 | setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
|
| 3 | setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
|
| 4 | setsms.m | |- ( ph -> M e. V ) |
|
| 5 | fvex | |- ( MetOpen ` D ) e. _V |
|
| 6 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 7 | 6 | setsid | |- ( ( M e. V /\ ( MetOpen ` D ) e. _V ) -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 8 | 4 5 7 | sylancl | |- ( ph -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 9 | 3 | fveq2d | |- ( ph -> ( TopSet ` K ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 10 | 8 9 | eqtr4d | |- ( ph -> ( MetOpen ` D ) = ( TopSet ` K ) ) |