This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
||
| setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
||
| Assertion | setsmsbas | |- ( ph -> X = ( Base ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| 2 | setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
|
| 3 | setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
|
| 4 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 5 | tsetndxnbasendx | |- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
|
| 6 | 5 | necomi | |- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
| 7 | 4 6 | setsnid | |- ( Base ` M ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 8 | 3 | fveq2d | |- ( ph -> ( Base ` K ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 9 | 7 1 8 | 3eqtr4a | |- ( ph -> X = ( Base ` K ) ) |