This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsdm | |- ( ( G e. V /\ E e. W ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. I , E >. e. _V |
|
| 2 | 1 | a1i | |- ( E e. W -> <. I , E >. e. _V ) |
| 3 | setsvalg | |- ( ( G e. V /\ <. I , E >. e. _V ) -> ( G sSet <. I , E >. ) = ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( G e. V /\ E e. W ) -> ( G sSet <. I , E >. ) = ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 5 | 4 | dmeqd | |- ( ( G e. V /\ E e. W ) -> dom ( G sSet <. I , E >. ) = dom ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) ) |
| 6 | dmun | |- dom ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) = ( dom ( G |` ( _V \ dom { <. I , E >. } ) ) u. dom { <. I , E >. } ) |
|
| 7 | dmres | |- dom ( G |` ( _V \ dom { <. I , E >. } ) ) = ( ( _V \ dom { <. I , E >. } ) i^i dom G ) |
|
| 8 | dmsnopg | |- ( E e. W -> dom { <. I , E >. } = { I } ) |
|
| 9 | 8 | adantl | |- ( ( G e. V /\ E e. W ) -> dom { <. I , E >. } = { I } ) |
| 10 | 9 | difeq2d | |- ( ( G e. V /\ E e. W ) -> ( _V \ dom { <. I , E >. } ) = ( _V \ { I } ) ) |
| 11 | 10 | ineq1d | |- ( ( G e. V /\ E e. W ) -> ( ( _V \ dom { <. I , E >. } ) i^i dom G ) = ( ( _V \ { I } ) i^i dom G ) ) |
| 12 | incom | |- ( ( _V \ { I } ) i^i dom G ) = ( dom G i^i ( _V \ { I } ) ) |
|
| 13 | invdif | |- ( dom G i^i ( _V \ { I } ) ) = ( dom G \ { I } ) |
|
| 14 | 12 13 | eqtri | |- ( ( _V \ { I } ) i^i dom G ) = ( dom G \ { I } ) |
| 15 | 11 14 | eqtrdi | |- ( ( G e. V /\ E e. W ) -> ( ( _V \ dom { <. I , E >. } ) i^i dom G ) = ( dom G \ { I } ) ) |
| 16 | 7 15 | eqtrid | |- ( ( G e. V /\ E e. W ) -> dom ( G |` ( _V \ dom { <. I , E >. } ) ) = ( dom G \ { I } ) ) |
| 17 | 16 9 | uneq12d | |- ( ( G e. V /\ E e. W ) -> ( dom ( G |` ( _V \ dom { <. I , E >. } ) ) u. dom { <. I , E >. } ) = ( ( dom G \ { I } ) u. { I } ) ) |
| 18 | 6 17 | eqtrid | |- ( ( G e. V /\ E e. W ) -> dom ( ( G |` ( _V \ dom { <. I , E >. } ) ) u. { <. I , E >. } ) = ( ( dom G \ { I } ) u. { I } ) ) |
| 19 | undif1 | |- ( ( dom G \ { I } ) u. { I } ) = ( dom G u. { I } ) |
|
| 20 | 19 | a1i | |- ( ( G e. V /\ E e. W ) -> ( ( dom G \ { I } ) u. { I } ) = ( dom G u. { I } ) ) |
| 21 | 5 18 20 | 3eqtrd | |- ( ( G e. V /\ E e. W ) -> dom ( G sSet <. I , E >. ) = ( dom G u. { I } ) ) |