This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsvalg | |- ( ( S e. V /\ A e. W ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( S e. V -> S e. _V ) |
|
| 2 | elex | |- ( A e. W -> A e. _V ) |
|
| 3 | resexg | |- ( S e. _V -> ( S |` ( _V \ dom { A } ) ) e. _V ) |
|
| 4 | 3 | adantr | |- ( ( S e. _V /\ A e. _V ) -> ( S |` ( _V \ dom { A } ) ) e. _V ) |
| 5 | snex | |- { A } e. _V |
|
| 6 | unexg | |- ( ( ( S |` ( _V \ dom { A } ) ) e. _V /\ { A } e. _V ) -> ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. _V ) |
|
| 7 | 4 5 6 | sylancl | |- ( ( S e. _V /\ A e. _V ) -> ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. _V ) |
| 8 | simpl | |- ( ( s = S /\ e = A ) -> s = S ) |
|
| 9 | simpr | |- ( ( s = S /\ e = A ) -> e = A ) |
|
| 10 | 9 | sneqd | |- ( ( s = S /\ e = A ) -> { e } = { A } ) |
| 11 | 10 | dmeqd | |- ( ( s = S /\ e = A ) -> dom { e } = dom { A } ) |
| 12 | 11 | difeq2d | |- ( ( s = S /\ e = A ) -> ( _V \ dom { e } ) = ( _V \ dom { A } ) ) |
| 13 | 8 12 | reseq12d | |- ( ( s = S /\ e = A ) -> ( s |` ( _V \ dom { e } ) ) = ( S |` ( _V \ dom { A } ) ) ) |
| 14 | 13 10 | uneq12d | |- ( ( s = S /\ e = A ) -> ( ( s |` ( _V \ dom { e } ) ) u. { e } ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
| 15 | df-sets | |- sSet = ( s e. _V , e e. _V |-> ( ( s |` ( _V \ dom { e } ) ) u. { e } ) ) |
|
| 16 | 14 15 | ovmpoga | |- ( ( S e. _V /\ A e. _V /\ ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. _V ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
| 17 | 7 16 | mpd3an3 | |- ( ( S e. _V /\ A e. _V ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
| 18 | 1 2 17 | syl2an | |- ( ( S e. V /\ A e. W ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |