This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | |- B = ( Base ` C ) |
|
| ismon.h | |- H = ( Hom ` C ) |
||
| ismon.o | |- .x. = ( comp ` C ) |
||
| ismon.s | |- M = ( Mono ` C ) |
||
| ismon.c | |- ( ph -> C e. Cat ) |
||
| ismon.x | |- ( ph -> X e. B ) |
||
| ismon.y | |- ( ph -> Y e. B ) |
||
| Assertion | ismon2 | |- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | |- B = ( Base ` C ) |
|
| 2 | ismon.h | |- H = ( Hom ` C ) |
|
| 3 | ismon.o | |- .x. = ( comp ` C ) |
|
| 4 | ismon.s | |- M = ( Mono ` C ) |
|
| 5 | ismon.c | |- ( ph -> C e. Cat ) |
|
| 6 | ismon.x | |- ( ph -> X e. B ) |
|
| 7 | ismon.y | |- ( ph -> Y e. B ) |
|
| 8 | 1 2 3 4 5 6 7 | ismon | |- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) ) ) ) |
| 9 | 5 | ad2antrr | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> C e. Cat ) |
| 10 | simprl | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> z e. B ) |
|
| 11 | 6 | ad2antrr | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> X e. B ) |
| 12 | 7 | ad2antrr | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> Y e. B ) |
| 13 | simprr | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> g e. ( z H X ) ) |
|
| 14 | simplr | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> F e. ( X H Y ) ) |
|
| 15 | 1 2 3 9 10 11 12 13 14 | catcocl | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ ( z e. B /\ g e. ( z H X ) ) ) -> ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) ) |
| 16 | 15 | anassrs | |- ( ( ( ( ph /\ F e. ( X H Y ) ) /\ z e. B ) /\ g e. ( z H X ) ) -> ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) ) |
| 17 | 16 | ralrimiva | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ z e. B ) -> A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) ) |
| 18 | eqid | |- ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) = ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) |
|
| 19 | 18 | fmpt | |- ( A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) <-> ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) --> ( z H Y ) ) |
| 20 | df-f1 | |- ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) -1-1-> ( z H Y ) <-> ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) --> ( z H Y ) /\ Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) ) ) |
|
| 21 | 20 | baib | |- ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) --> ( z H Y ) -> ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) -1-1-> ( z H Y ) <-> Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) ) ) |
| 22 | 19 21 | sylbi | |- ( A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) -> ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) -1-1-> ( z H Y ) <-> Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) ) ) |
| 23 | oveq2 | |- ( g = h -> ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) ) |
|
| 24 | 18 23 | f1mpt | |- ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) -1-1-> ( z H Y ) <-> ( A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) /\ A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 25 | 24 | baib | |- ( A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) -> ( ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) : ( z H X ) -1-1-> ( z H Y ) <-> A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 26 | 22 25 | bitr3d | |- ( A. g e. ( z H X ) ( F ( <. z , X >. .x. Y ) g ) e. ( z H Y ) -> ( Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) <-> A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 27 | 17 26 | syl | |- ( ( ( ph /\ F e. ( X H Y ) ) /\ z e. B ) -> ( Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) <-> A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 28 | 27 | ralbidva | |- ( ( ph /\ F e. ( X H Y ) ) -> ( A. z e. B Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) <-> A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
| 29 | 28 | pm5.32da | |- ( ph -> ( ( F e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( F ( <. z , X >. .x. Y ) g ) ) ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) ) |
| 30 | 8 29 | bitrd | |- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) ) |