This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
||
| Assertion | sbthlem8 | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
|
| 4 | funres11 | |- ( Fun `' f -> Fun `' ( f |` U. D ) ) |
|
| 5 | funcnvcnv | |- ( Fun g -> Fun `' `' g ) |
|
| 6 | funres11 | |- ( Fun `' `' g -> Fun `' ( `' g |` ( A \ U. D ) ) ) |
|
| 7 | 5 6 | syl | |- ( Fun g -> Fun `' ( `' g |` ( A \ U. D ) ) ) |
| 8 | 7 | ad3antrrr | |- ( ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) -> Fun `' ( `' g |` ( A \ U. D ) ) ) |
| 9 | 4 8 | anim12i | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( Fun `' ( f |` U. D ) /\ Fun `' ( `' g |` ( A \ U. D ) ) ) ) |
| 10 | df-ima | |- ( f " U. D ) = ran ( f |` U. D ) |
|
| 11 | df-rn | |- ran ( f |` U. D ) = dom `' ( f |` U. D ) |
|
| 12 | 10 11 | eqtr2i | |- dom `' ( f |` U. D ) = ( f " U. D ) |
| 13 | df-ima | |- ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) |
|
| 14 | df-rn | |- ran ( `' g |` ( A \ U. D ) ) = dom `' ( `' g |` ( A \ U. D ) ) |
|
| 15 | 13 14 | eqtri | |- ( `' g " ( A \ U. D ) ) = dom `' ( `' g |` ( A \ U. D ) ) |
| 16 | 1 2 | sbthlem4 | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |
| 17 | 15 16 | eqtr3id | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> dom `' ( `' g |` ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |
| 18 | ineq12 | |- ( ( dom `' ( f |` U. D ) = ( f " U. D ) /\ dom `' ( `' g |` ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) ) |
|
| 19 | 12 17 18 | sylancr | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) ) |
| 20 | disjdif | |- ( ( f " U. D ) i^i ( B \ ( f " U. D ) ) ) = (/) |
|
| 21 | 19 20 | eqtrdi | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) |
| 22 | 21 | adantlll | |- ( ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) |
| 23 | 22 | adantl | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) |
| 24 | funun | |- ( ( ( Fun `' ( f |` U. D ) /\ Fun `' ( `' g |` ( A \ U. D ) ) ) /\ ( dom `' ( f |` U. D ) i^i dom `' ( `' g |` ( A \ U. D ) ) ) = (/) ) -> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) |
|
| 25 | 9 23 24 | syl2anc | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) |
| 26 | 3 | cnveqi | |- `' H = `' ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
| 27 | cnvun | |- `' ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) = ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) |
|
| 28 | 26 27 | eqtri | |- `' H = ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) |
| 29 | 28 | funeqi | |- ( Fun `' H <-> Fun ( `' ( f |` U. D ) u. `' ( `' g |` ( A \ U. D ) ) ) ) |
| 30 | 25 29 | sylibr | |- ( ( Fun `' f /\ ( ( ( Fun g /\ dom g = B ) /\ ran g C_ A ) /\ Fun `' g ) ) -> Fun `' H ) |