This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
||
| sbthlem.4 | |- B e. _V |
||
| Assertion | sbthlem10 | |- ( ( A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | sbthlem.3 | |- H = ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) |
|
| 4 | sbthlem.4 | |- B e. _V |
|
| 5 | 4 | brdom | |- ( A ~<_ B <-> E. f f : A -1-1-> B ) |
| 6 | 1 | brdom | |- ( B ~<_ A <-> E. g g : B -1-1-> A ) |
| 7 | 5 6 | anbi12i | |- ( ( A ~<_ B /\ B ~<_ A ) <-> ( E. f f : A -1-1-> B /\ E. g g : B -1-1-> A ) ) |
| 8 | exdistrv | |- ( E. f E. g ( f : A -1-1-> B /\ g : B -1-1-> A ) <-> ( E. f f : A -1-1-> B /\ E. g g : B -1-1-> A ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( A ~<_ B /\ B ~<_ A ) <-> E. f E. g ( f : A -1-1-> B /\ g : B -1-1-> A ) ) |
| 10 | vex | |- f e. _V |
|
| 11 | 10 | resex | |- ( f |` U. D ) e. _V |
| 12 | vex | |- g e. _V |
|
| 13 | 12 | cnvex | |- `' g e. _V |
| 14 | 13 | resex | |- ( `' g |` ( A \ U. D ) ) e. _V |
| 15 | 11 14 | unex | |- ( ( f |` U. D ) u. ( `' g |` ( A \ U. D ) ) ) e. _V |
| 16 | 3 15 | eqeltri | |- H e. _V |
| 17 | 1 2 3 | sbthlem9 | |- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) -> H : A -1-1-onto-> B ) |
| 18 | f1oen3g | |- ( ( H e. _V /\ H : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 19 | 16 17 18 | sylancr | |- ( ( f : A -1-1-> B /\ g : B -1-1-> A ) -> A ~~ B ) |
| 20 | 19 | exlimivv | |- ( E. f E. g ( f : A -1-1-> B /\ g : B -1-1-> A ) -> A ~~ B ) |
| 21 | 9 20 | sylbi | |- ( ( A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |