This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| Assertion | sbthlem4 | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | df-ima | |- ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) |
|
| 4 | difss | |- ( B \ ( f " U. D ) ) C_ B |
|
| 5 | sseq2 | |- ( dom g = B -> ( ( B \ ( f " U. D ) ) C_ dom g <-> ( B \ ( f " U. D ) ) C_ B ) ) |
|
| 6 | 4 5 | mpbiri | |- ( dom g = B -> ( B \ ( f " U. D ) ) C_ dom g ) |
| 7 | ssdmres | |- ( ( B \ ( f " U. D ) ) C_ dom g <-> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
|
| 8 | 6 7 | sylib | |- ( dom g = B -> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
| 9 | dfdm4 | |- dom ( g |` ( B \ ( f " U. D ) ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) |
|
| 10 | 8 9 | eqtr3di | |- ( dom g = B -> ( B \ ( f " U. D ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) ) |
| 11 | funcnvres | |- ( Fun `' g -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) ) |
|
| 12 | 1 2 | sbthlem3 | |- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |
| 13 | 12 | reseq2d | |- ( ran g C_ A -> ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
| 14 | 11 13 | sylan9eqr | |- ( ( ran g C_ A /\ Fun `' g ) -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
| 15 | 14 | rneqd | |- ( ( ran g C_ A /\ Fun `' g ) -> ran `' ( g |` ( B \ ( f " U. D ) ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 16 | 10 15 | sylan9eq | |- ( ( dom g = B /\ ( ran g C_ A /\ Fun `' g ) ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 17 | 16 | anassrs | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 18 | 3 17 | eqtr4id | |- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |