This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbthlem.1 | |- A e. _V |
|
| sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
||
| Assertion | sbthlem2 | |- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | |- A e. _V |
|
| 2 | sbthlem.2 | |- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
|
| 3 | 1 2 | sbthlem1 | |- U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) |
| 4 | imass2 | |- ( U. D C_ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( f " U. D ) C_ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
|
| 5 | sscon | |- ( ( f " U. D ) C_ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) -> ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) ) |
|
| 6 | 3 4 5 | mp2b | |- ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) |
| 7 | imass2 | |- ( ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) C_ ( B \ ( f " U. D ) ) -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( g " ( B \ ( f " U. D ) ) ) ) |
|
| 8 | sscon | |- ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( g " ( B \ ( f " U. D ) ) ) -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
| 10 | imassrn | |- ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ran g |
|
| 11 | sstr2 | |- ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ran g -> ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A ) |
| 13 | difss | |- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A |
|
| 14 | ssconb | |- ( ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ A /\ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A ) -> ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) ) |
|
| 15 | 12 13 14 | sylancl | |- ( ran g C_ A -> ( ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ ( A \ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) ) ) |
| 16 | 9 15 | mpbiri | |- ( ran g C_ A -> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
| 17 | 16 13 | jctil | |- ( ran g C_ A -> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
| 18 | 1 | difexi | |- ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. _V |
| 19 | sseq1 | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( x C_ A <-> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A ) ) |
|
| 20 | imaeq2 | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( f " x ) = ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
|
| 21 | 20 | difeq2d | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( B \ ( f " x ) ) = ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
| 22 | 21 | imaeq2d | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( g " ( B \ ( f " x ) ) ) = ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
| 23 | difeq2 | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( A \ x ) = ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) |
|
| 24 | 22 23 | sseq12d | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) <-> ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
| 25 | 19 24 | anbi12d | |- ( x = ( A \ ( g " ( B \ ( f " U. D ) ) ) ) -> ( ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) <-> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) ) |
| 26 | 18 25 | elab | |- ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } <-> ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ A /\ ( g " ( B \ ( f " ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) C_ ( A \ ( A \ ( g " ( B \ ( f " U. D ) ) ) ) ) ) ) |
| 27 | 17 26 | sylibr | |- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } ) |
| 28 | 27 2 | eleqtrrdi | |- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. D ) |
| 29 | elssuni | |- ( ( A \ ( g " ( B \ ( f " U. D ) ) ) ) e. D -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |
|
| 30 | 28 29 | syl | |- ( ran g C_ A -> ( A \ ( g " ( B \ ( f " U. D ) ) ) ) C_ U. D ) |