This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Every first component of the G sequence is less than every second component. That is, the sequences form a chain a_1 < a_2 < ... < b_2 < b_1, where a_i are the first components and b_i are the second components. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | ||
| ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | ||
| ruclem10.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| ruclem10.7 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | ruclem10 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) < ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | |
| 4 | ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | |
| 5 | ruclem10.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 6 | ruclem10.7 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 7 | 1 2 3 4 | ruclem6 | ⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ) |
| 8 | 7 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ∈ ( ℝ × ℝ ) ) |
| 9 | xp1st | ⊢ ( ( 𝐺 ‘ 𝑀 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ∈ ℝ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ∈ ℝ ) |
| 11 | 6 5 | ifcld | ⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℕ0 ) |
| 12 | 7 11 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) ) |
| 13 | xp1st | ⊢ ( ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 15 | 7 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) ∈ ( ℝ × ℝ ) ) |
| 16 | xp2nd | ⊢ ( ( 𝐺 ‘ 𝑁 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ∈ ℝ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ∈ ℝ ) |
| 18 | 5 | nn0red | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 19 | 6 | nn0red | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 22 | 5 | nn0zd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 23 | 11 | nn0zd | ⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
| 24 | eluz | ⊢ ( ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( 𝜑 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 26 | 21 25 | mpbird | ⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 27 | 1 2 3 4 5 26 | ruclem9 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∧ ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 28 | 27 | simpld | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 29 | xp2nd | ⊢ ( ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) | |
| 30 | 12 29 | syl | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∈ ℝ ) |
| 31 | 1 2 3 4 | ruclem8 | ⊢ ( ( 𝜑 ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℕ0 ) → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 32 | 11 31 | mpdan | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ) |
| 33 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) | |
| 34 | 18 19 33 | syl2anc | ⊢ ( 𝜑 → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 35 | 6 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 36 | eluz | ⊢ ( ( 𝑁 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) | |
| 37 | 35 23 36 | syl2anc | ⊢ ( 𝜑 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 38 | 34 37 | mpbird | ⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 39 | 1 2 3 4 6 38 | ruclem9 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ‘ 𝑁 ) ) ≤ ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ∧ ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) ) |
| 40 | 39 | simprd | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
| 41 | 14 30 17 32 40 | ltletrd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) < ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
| 42 | 10 14 17 28 41 | lelttrd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ‘ 𝑀 ) ) < ( 2nd ‘ ( 𝐺 ‘ 𝑁 ) ) ) |