This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxsca.r | |- H = ( RR^ ` I ) |
|
| Assertion | rrxsca | |- ( I e. V -> ( Scalar ` H ) = RRfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxsca.r | |- H = ( RR^ ` I ) |
|
| 2 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 3 | 1 2 | rrxprds | |- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 4 | 3 | fveq2d | |- ( I e. V -> ( Scalar ` H ) = ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) ) |
| 5 | fvex | |- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) e. _V |
|
| 6 | 5 | mptex | |- ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V |
| 7 | eqid | |- ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
|
| 8 | eqid | |- ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
|
| 9 | 7 8 | tngsca | |- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
| 10 | 9 | eqcomd | |- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 11 | 6 10 | mp1i | |- ( I e. V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 12 | eqid | |- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
|
| 13 | eqid | |- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
|
| 14 | eqid | |- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
|
| 15 | 12 13 14 | tcphval | |- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
| 16 | 15 | fveq2i | |- ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) |
| 17 | 16 | a1i | |- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
| 18 | eqid | |- ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |
|
| 19 | refld | |- RRfld e. Field |
|
| 20 | 19 | a1i | |- ( I e. V -> RRfld e. Field ) |
| 21 | id | |- ( I e. V -> I e. V ) |
|
| 22 | snex | |- { ( ( subringAlg ` RRfld ) ` RR ) } e. _V |
|
| 23 | 22 | a1i | |- ( I e. V -> { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) |
| 24 | 21 23 | xpexd | |- ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
| 25 | 18 20 24 | prdssca | |- ( I e. V -> RRfld = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) ) |
| 26 | fvex | |- ( Base ` H ) e. _V |
|
| 27 | eqid | |- ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) |
|
| 28 | eqid | |- ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
|
| 29 | 27 28 | resssca | |- ( ( Base ` H ) e. _V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 30 | 26 29 | mp1i | |- ( I e. V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 31 | 25 30 | eqtrd | |- ( I e. V -> RRfld = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 32 | 11 17 31 | 3eqtr4d | |- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = RRfld ) |
| 33 | 4 32 | eqtrd | |- ( I e. V -> ( Scalar ` H ) = RRfld ) |