This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| Assertion | rrxmvallem | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 2 | simprl | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) = 0 ) |
|
| 3 | 0cn | |- 0 e. CC |
|
| 4 | 2 3 | eqeltrdi | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) e. CC ) |
| 5 | simprr | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( G ` x ) = 0 ) |
|
| 6 | 2 5 | eqtr4d | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) = ( G ` x ) ) |
| 7 | 4 6 | subeq0bd | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( ( F ` x ) - ( G ` x ) ) = 0 ) |
| 8 | 7 | sq0id | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) |
| 9 | 8 | ex | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) ) |
| 10 | ioran | |- ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( -. ( F ` x ) =/= 0 /\ -. ( G ` x ) =/= 0 ) ) |
|
| 11 | nne | |- ( -. ( F ` x ) =/= 0 <-> ( F ` x ) = 0 ) |
|
| 12 | nne | |- ( -. ( G ` x ) =/= 0 <-> ( G ` x ) = 0 ) |
|
| 13 | 11 12 | anbi12i | |- ( ( -. ( F ` x ) =/= 0 /\ -. ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) |
| 14 | 10 13 | bitri | |- ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) |
| 15 | 14 | a1i | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) ) |
| 16 | eqidd | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) = ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
|
| 17 | simpr | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> k = x ) |
|
| 18 | 17 | fveq2d | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( F ` k ) = ( F ` x ) ) |
| 19 | 17 | fveq2d | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( G ` k ) = ( G ` x ) ) |
| 20 | 18 19 | oveq12d | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( ( F ` k ) - ( G ` k ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 21 | 20 | oveq1d | |- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) ) |
| 22 | simpr | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> x e. I ) |
|
| 23 | ovex | |- ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) e. _V |
|
| 24 | 23 | a1i | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) e. _V ) |
| 25 | 16 21 22 24 | fvmptd | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) = ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) ) |
| 26 | 25 | neeq1d | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 <-> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) =/= 0 ) ) |
| 27 | 26 | bicomd | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) =/= 0 <-> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 ) ) |
| 28 | 27 | necon1bbid | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 <-> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) ) |
| 29 | 9 15 28 | 3imtr4d | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) -> -. ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 ) ) |
| 30 | 29 | con4d | |- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 -> ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) ) ) |
| 31 | 30 | ss2rabdv | |- ( ( I e. V /\ F e. X /\ G e. X ) -> { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } C_ { x e. I | ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) } ) |
| 32 | unrab | |- ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) = { x e. I | ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) } |
|
| 33 | 31 32 | sseqtrrdi | |- ( ( I e. V /\ F e. X /\ G e. X ) -> { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } C_ ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) ) |
| 34 | simp1 | |- ( ( I e. V /\ F e. X /\ G e. X ) -> I e. V ) |
|
| 35 | ovex | |- ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. _V |
|
| 36 | eqid | |- ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) = ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
|
| 37 | 35 36 | fnmpti | |- ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) Fn I |
| 38 | suppvalfn | |- ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) Fn I /\ I e. V /\ 0 e. CC ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
|
| 39 | 37 3 38 | mp3an13 | |- ( I e. V -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
| 40 | 34 39 | syl | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
| 41 | elrabi | |- ( F e. { h e. ( RR ^m I ) | h finSupp 0 } -> F e. ( RR ^m I ) ) |
|
| 42 | 41 1 | eleq2s | |- ( F e. X -> F e. ( RR ^m I ) ) |
| 43 | elmapi | |- ( F e. ( RR ^m I ) -> F : I --> RR ) |
|
| 44 | ffn | |- ( F : I --> RR -> F Fn I ) |
|
| 45 | 42 43 44 | 3syl | |- ( F e. X -> F Fn I ) |
| 46 | 45 | 3ad2ant2 | |- ( ( I e. V /\ F e. X /\ G e. X ) -> F Fn I ) |
| 47 | 3 | a1i | |- ( ( I e. V /\ F e. X /\ G e. X ) -> 0 e. CC ) |
| 48 | suppvalfn | |- ( ( F Fn I /\ I e. V /\ 0 e. CC ) -> ( F supp 0 ) = { x e. I | ( F ` x ) =/= 0 } ) |
|
| 49 | 46 34 47 48 | syl3anc | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( F supp 0 ) = { x e. I | ( F ` x ) =/= 0 } ) |
| 50 | elrabi | |- ( G e. { h e. ( RR ^m I ) | h finSupp 0 } -> G e. ( RR ^m I ) ) |
|
| 51 | 50 1 | eleq2s | |- ( G e. X -> G e. ( RR ^m I ) ) |
| 52 | elmapi | |- ( G e. ( RR ^m I ) -> G : I --> RR ) |
|
| 53 | ffn | |- ( G : I --> RR -> G Fn I ) |
|
| 54 | 51 52 53 | 3syl | |- ( G e. X -> G Fn I ) |
| 55 | 54 | 3ad2ant3 | |- ( ( I e. V /\ F e. X /\ G e. X ) -> G Fn I ) |
| 56 | suppvalfn | |- ( ( G Fn I /\ I e. V /\ 0 e. CC ) -> ( G supp 0 ) = { x e. I | ( G ` x ) =/= 0 } ) |
|
| 57 | 55 34 47 56 | syl3anc | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( G supp 0 ) = { x e. I | ( G ` x ) =/= 0 } ) |
| 58 | 49 57 | uneq12d | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( F supp 0 ) u. ( G supp 0 ) ) = ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) ) |
| 59 | 33 40 58 | 3sstr4d | |- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |