This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| Assertion | rrxmvallem | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | ⊢ 𝑋 = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 2 | simprl | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) | |
| 3 | 0cn | ⊢ 0 ∈ ℂ | |
| 4 | 2 3 | eqeltrdi | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 5 | simprr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 ‘ 𝑥 ) = 0 ) | |
| 6 | 2 5 | eqtr4d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 7 | 4 6 | subeq0bd | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = 0 ) |
| 8 | 7 | sq0id | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) |
| 9 | 8 | ex | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) ) |
| 10 | ioran | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) | |
| 11 | nne | ⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) | |
| 12 | nne | ⊢ ( ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐺 ‘ 𝑥 ) = 0 ) | |
| 13 | 11 12 | anbi12i | ⊢ ( ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ¬ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
| 14 | 10 13 | bitri | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
| 15 | 14 | a1i | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ∧ ( 𝐺 ‘ 𝑥 ) = 0 ) ) ) |
| 16 | eqidd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) | |
| 17 | simpr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → 𝑘 = 𝑥 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 19 | 17 | fveq2d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 20 | 18 19 | oveq12d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 = 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 22 | simpr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 23 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ∈ V | |
| 24 | 23 | a1i | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ∈ V ) |
| 25 | 16 21 22 24 | fvmptd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 26 | 25 | neeq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ≠ 0 ) ) |
| 27 | 26 | bicomd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) ≠ 0 ↔ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ) ) |
| 28 | 27 | necon1bbid | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↑ 2 ) = 0 ) ) |
| 29 | 9 15 28 | 3imtr4d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) → ¬ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 ) ) |
| 30 | 29 | con4d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 → ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) ) |
| 31 | 30 | ss2rabdv | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ { 𝑥 ∈ 𝐼 ∣ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) } ) |
| 32 | unrab | ⊢ ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) } | |
| 33 | 31 32 | sseqtrrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) ) |
| 34 | simp1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) | |
| 35 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ∈ V | |
| 36 | eqid | ⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) | |
| 37 | 35 36 | fnmpti | ⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) Fn 𝐼 |
| 38 | suppvalfn | ⊢ ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) | |
| 39 | 37 3 38 | mp3an13 | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) |
| 40 | 34 39 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ‘ 𝑥 ) ≠ 0 } ) |
| 41 | elrabi | ⊢ ( 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) | |
| 42 | 41 1 | eleq2s | ⊢ ( 𝐹 ∈ 𝑋 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 43 | elmapi | ⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 44 | ffn | ⊢ ( 𝐹 : 𝐼 ⟶ ℝ → 𝐹 Fn 𝐼 ) | |
| 45 | 42 43 44 | 3syl | ⊢ ( 𝐹 ∈ 𝑋 → 𝐹 Fn 𝐼 ) |
| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 Fn 𝐼 ) |
| 47 | 3 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ∈ ℂ ) |
| 48 | suppvalfn | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( 𝐹 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ) | |
| 49 | 46 34 47 48 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ) |
| 50 | elrabi | ⊢ ( 𝐺 ∈ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) | |
| 51 | 50 1 | eleq2s | ⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 52 | elmapi | ⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) | |
| 53 | ffn | ⊢ ( 𝐺 : 𝐼 ⟶ ℝ → 𝐺 Fn 𝐼 ) | |
| 54 | 51 52 53 | 3syl | ⊢ ( 𝐺 ∈ 𝑋 → 𝐺 Fn 𝐼 ) |
| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 Fn 𝐼 ) |
| 56 | suppvalfn | ⊢ ( ( 𝐺 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ ) → ( 𝐺 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) | |
| 57 | 55 34 47 56 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) |
| 58 | 49 57 | uneq12d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) = ( { 𝑥 ∈ 𝐼 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 0 } ∪ { 𝑥 ∈ 𝐼 ∣ ( 𝐺 ‘ 𝑥 ) ≠ 0 } ) ) |
| 59 | 33 40 58 | 3sstr4d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |