This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrx0el.0 | ⊢ 0 = ( 𝐼 × { 0 } ) | |
| rrx0el.p | ⊢ 𝑃 = ( ℝ ↑m 𝐼 ) | ||
| Assertion | rrx0el | ⊢ ( 𝐼 ∈ 𝑉 → 0 ∈ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx0el.0 | ⊢ 0 = ( 𝐼 × { 0 } ) | |
| 2 | rrx0el.p | ⊢ 𝑃 = ( ℝ ↑m 𝐼 ) | |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | 3 | fconst | ⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } |
| 5 | 4 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } ) |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | snssg | ⊢ ( 0 ∈ ℝ → ( 0 ∈ ℝ ↔ { 0 } ⊆ ℝ ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 0 ∈ ℝ ↔ { 0 } ⊆ ℝ ) |
| 9 | 6 8 | mpbi | ⊢ { 0 } ⊆ ℝ |
| 10 | 9 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → { 0 } ⊆ ℝ ) |
| 11 | 5 10 | fssd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℝ ) |
| 12 | reex | ⊢ ℝ ∈ V | |
| 13 | 12 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ℝ ∈ V ) |
| 14 | id | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) | |
| 15 | 13 14 | elmapd | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝐼 × { 0 } ) ∈ ( ℝ ↑m 𝐼 ) ↔ ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℝ ) ) |
| 16 | 11 15 | mpbird | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 17 | 16 1 2 | 3eltr4g | ⊢ ( 𝐼 ∈ 𝑉 → 0 ∈ 𝑃 ) |