This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015) (Revised by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | |- E = ( RLReg ` R ) |
|
| rrgval.b | |- B = ( Base ` R ) |
||
| rrgval.t | |- .x. = ( .r ` R ) |
||
| rrgval.z | |- .0. = ( 0g ` R ) |
||
| rrgsupp.i | |- ( ph -> I e. V ) |
||
| rrgsupp.r | |- ( ph -> R e. Ring ) |
||
| rrgsupp.x | |- ( ph -> X e. E ) |
||
| rrgsupp.y | |- ( ph -> Y : I --> B ) |
||
| Assertion | rrgsupp | |- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = ( Y supp .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | |- E = ( RLReg ` R ) |
|
| 2 | rrgval.b | |- B = ( Base ` R ) |
|
| 3 | rrgval.t | |- .x. = ( .r ` R ) |
|
| 4 | rrgval.z | |- .0. = ( 0g ` R ) |
|
| 5 | rrgsupp.i | |- ( ph -> I e. V ) |
|
| 6 | rrgsupp.r | |- ( ph -> R e. Ring ) |
|
| 7 | rrgsupp.x | |- ( ph -> X e. E ) |
|
| 8 | rrgsupp.y | |- ( ph -> Y : I --> B ) |
|
| 9 | 7 | adantr | |- ( ( ph /\ y e. I ) -> X e. E ) |
| 10 | fvexd | |- ( ( ph /\ y e. I ) -> ( Y ` y ) e. _V ) |
|
| 11 | fconstmpt | |- ( I X. { X } ) = ( y e. I |-> X ) |
|
| 12 | 11 | a1i | |- ( ph -> ( I X. { X } ) = ( y e. I |-> X ) ) |
| 13 | 8 | feqmptd | |- ( ph -> Y = ( y e. I |-> ( Y ` y ) ) ) |
| 14 | 5 9 10 12 13 | offval2 | |- ( ph -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ x e. I ) -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
| 16 | 15 | fveq1d | |- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) ) |
| 17 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 18 | ovex | |- ( X .x. ( Y ` x ) ) e. _V |
|
| 19 | fveq2 | |- ( y = x -> ( Y ` y ) = ( Y ` x ) ) |
|
| 20 | 19 | oveq2d | |- ( y = x -> ( X .x. ( Y ` y ) ) = ( X .x. ( Y ` x ) ) ) |
| 21 | eqid | |- ( y e. I |-> ( X .x. ( Y ` y ) ) ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) |
|
| 22 | 20 21 | fvmptg | |- ( ( x e. I /\ ( X .x. ( Y ` x ) ) e. _V ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 23 | 17 18 22 | sylancl | |- ( ( ph /\ x e. I ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 24 | 16 23 | eqtrd | |- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 25 | 24 | neeq1d | |- ( ( ph /\ x e. I ) -> ( ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. <-> ( X .x. ( Y ` x ) ) =/= .0. ) ) |
| 26 | 25 | rabbidva | |- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } ) |
| 27 | 6 | adantr | |- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 28 | 7 | adantr | |- ( ( ph /\ x e. I ) -> X e. E ) |
| 29 | 8 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( Y ` x ) e. B ) |
| 30 | 1 2 3 4 | rrgeq0 | |- ( ( R e. Ring /\ X e. E /\ ( Y ` x ) e. B ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
| 31 | 27 28 29 30 | syl3anc | |- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
| 32 | 31 | necon3bid | |- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) =/= .0. <-> ( Y ` x ) =/= .0. ) ) |
| 33 | 32 | rabbidva | |- ( ph -> { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
| 34 | 26 33 | eqtrd | |- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
| 35 | ovex | |- ( X .x. ( Y ` y ) ) e. _V |
|
| 36 | 35 21 | fnmpti | |- ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I |
| 37 | fneq1 | |- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( ( I X. { X } ) oF .x. Y ) Fn I <-> ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I ) ) |
|
| 38 | 36 37 | mpbiri | |- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
| 39 | 14 38 | syl | |- ( ph -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
| 40 | 4 | fvexi | |- .0. e. _V |
| 41 | 40 | a1i | |- ( ph -> .0. e. _V ) |
| 42 | suppvalfn | |- ( ( ( ( I X. { X } ) oF .x. Y ) Fn I /\ I e. V /\ .0. e. _V ) -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
|
| 43 | 39 5 41 42 | syl3anc | |- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
| 44 | 8 | ffnd | |- ( ph -> Y Fn I ) |
| 45 | suppvalfn | |- ( ( Y Fn I /\ I e. V /\ .0. e. _V ) -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
|
| 46 | 44 5 41 45 | syl3anc | |- ( ph -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
| 47 | 34 43 46 | 3eqtr4d | |- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = ( Y supp .0. ) ) |