This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are relatively prime, then so are A and B ^ N . Originally a subproof of rppwr . (Contributed by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rprpwr | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( A gcd ( B ^ N ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rplpwr | |- ( ( B e. NN /\ A e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
| 3 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 4 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 5 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 8 | 7 | eqeq1d | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 <-> ( B gcd A ) = 1 ) ) |
| 9 | simp1 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
|
| 10 | 9 | nnzd | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. ZZ ) |
| 11 | simp2 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
|
| 12 | simp3 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN ) |
|
| 13 | 12 | nnnn0d | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 14 | 11 13 | nnexpcld | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
| 15 | 14 | nnzd | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
| 16 | 10 15 | gcdcomd | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd ( B ^ N ) ) = ( ( B ^ N ) gcd A ) ) |
| 17 | 16 | eqeq1d | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd A ) = 1 ) ) |
| 18 | 2 8 17 | 3imtr4d | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( A gcd ( B ^ N ) ) = 1 ) ) |