This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rntpos | |- ( Rel dom F -> ran tpos F = ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- z e. _V |
|
| 2 | 1 | elrn | |- ( z e. ran tpos F <-> E. w w tpos F z ) |
| 3 | vex | |- w e. _V |
|
| 4 | 3 1 | breldm | |- ( w tpos F z -> w e. dom tpos F ) |
| 5 | dmtpos | |- ( Rel dom F -> dom tpos F = `' dom F ) |
|
| 6 | 5 | eleq2d | |- ( Rel dom F -> ( w e. dom tpos F <-> w e. `' dom F ) ) |
| 7 | 4 6 | imbitrid | |- ( Rel dom F -> ( w tpos F z -> w e. `' dom F ) ) |
| 8 | relcnv | |- Rel `' dom F |
|
| 9 | elrel | |- ( ( Rel `' dom F /\ w e. `' dom F ) -> E. x E. y w = <. x , y >. ) |
|
| 10 | 8 9 | mpan | |- ( w e. `' dom F -> E. x E. y w = <. x , y >. ) |
| 11 | 7 10 | syl6 | |- ( Rel dom F -> ( w tpos F z -> E. x E. y w = <. x , y >. ) ) |
| 12 | breq1 | |- ( w = <. x , y >. -> ( w tpos F z <-> <. x , y >. tpos F z ) ) |
|
| 13 | brtpos | |- ( z e. _V -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) |
|
| 14 | 13 | elv | |- ( <. x , y >. tpos F z <-> <. y , x >. F z ) |
| 15 | 12 14 | bitrdi | |- ( w = <. x , y >. -> ( w tpos F z <-> <. y , x >. F z ) ) |
| 16 | opex | |- <. y , x >. e. _V |
|
| 17 | 16 1 | brelrn | |- ( <. y , x >. F z -> z e. ran F ) |
| 18 | 15 17 | biimtrdi | |- ( w = <. x , y >. -> ( w tpos F z -> z e. ran F ) ) |
| 19 | 18 | exlimivv | |- ( E. x E. y w = <. x , y >. -> ( w tpos F z -> z e. ran F ) ) |
| 20 | 11 19 | syli | |- ( Rel dom F -> ( w tpos F z -> z e. ran F ) ) |
| 21 | 20 | exlimdv | |- ( Rel dom F -> ( E. w w tpos F z -> z e. ran F ) ) |
| 22 | 2 21 | biimtrid | |- ( Rel dom F -> ( z e. ran tpos F -> z e. ran F ) ) |
| 23 | 1 | elrn | |- ( z e. ran F <-> E. w w F z ) |
| 24 | 3 1 | breldm | |- ( w F z -> w e. dom F ) |
| 25 | elrel | |- ( ( Rel dom F /\ w e. dom F ) -> E. y E. x w = <. y , x >. ) |
|
| 26 | 25 | ex | |- ( Rel dom F -> ( w e. dom F -> E. y E. x w = <. y , x >. ) ) |
| 27 | 24 26 | syl5 | |- ( Rel dom F -> ( w F z -> E. y E. x w = <. y , x >. ) ) |
| 28 | breq1 | |- ( w = <. y , x >. -> ( w F z <-> <. y , x >. F z ) ) |
|
| 29 | 28 14 | bitr4di | |- ( w = <. y , x >. -> ( w F z <-> <. x , y >. tpos F z ) ) |
| 30 | opex | |- <. x , y >. e. _V |
|
| 31 | 30 1 | brelrn | |- ( <. x , y >. tpos F z -> z e. ran tpos F ) |
| 32 | 29 31 | biimtrdi | |- ( w = <. y , x >. -> ( w F z -> z e. ran tpos F ) ) |
| 33 | 32 | exlimivv | |- ( E. y E. x w = <. y , x >. -> ( w F z -> z e. ran tpos F ) ) |
| 34 | 27 33 | syli | |- ( Rel dom F -> ( w F z -> z e. ran tpos F ) ) |
| 35 | 34 | exlimdv | |- ( Rel dom F -> ( E. w w F z -> z e. ran tpos F ) ) |
| 36 | 23 35 | biimtrid | |- ( Rel dom F -> ( z e. ran F -> z e. ran tpos F ) ) |
| 37 | 22 36 | impbid | |- ( Rel dom F -> ( z e. ran tpos F <-> z e. ran F ) ) |
| 38 | 37 | eqrdv | |- ( Rel dom F -> ran tpos F = ran F ) |