This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposexg | |- ( F e. V -> tpos F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp | |- tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) |
|
| 2 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 3 | cnvexg | |- ( dom F e. _V -> `' dom F e. _V ) |
|
| 4 | 2 3 | syl | |- ( F e. V -> `' dom F e. _V ) |
| 5 | p0ex | |- { (/) } e. _V |
|
| 6 | unexg | |- ( ( `' dom F e. _V /\ { (/) } e. _V ) -> ( `' dom F u. { (/) } ) e. _V ) |
|
| 7 | 4 5 6 | sylancl | |- ( F e. V -> ( `' dom F u. { (/) } ) e. _V ) |
| 8 | rnexg | |- ( F e. V -> ran F e. _V ) |
|
| 9 | 7 8 | xpexd | |- ( F e. V -> ( ( `' dom F u. { (/) } ) X. ran F ) e. _V ) |
| 10 | ssexg | |- ( ( tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) /\ ( ( `' dom F u. { (/) } ) X. ran F ) e. _V ) -> tpos F e. _V ) |
|
| 11 | 1 9 10 | sylancr | |- ( F e. V -> tpos F e. _V ) |