This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmtpos | |- ( Rel dom F -> dom tpos F = `' dom F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp | |- -. (/) e. ( _V X. _V ) |
|
| 2 | ssel | |- ( dom F C_ ( _V X. _V ) -> ( (/) e. dom F -> (/) e. ( _V X. _V ) ) ) |
|
| 3 | 1 2 | mtoi | |- ( dom F C_ ( _V X. _V ) -> -. (/) e. dom F ) |
| 4 | df-rel | |- ( Rel dom F <-> dom F C_ ( _V X. _V ) ) |
|
| 5 | reldmtpos | |- ( Rel dom tpos F <-> -. (/) e. dom F ) |
|
| 6 | 3 4 5 | 3imtr4i | |- ( Rel dom F -> Rel dom tpos F ) |
| 7 | relcnv | |- Rel `' dom F |
|
| 8 | 6 7 | jctir | |- ( Rel dom F -> ( Rel dom tpos F /\ Rel `' dom F ) ) |
| 9 | vex | |- z e. _V |
|
| 10 | brtpos | |- ( z e. _V -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) |
|
| 11 | 9 10 | mp1i | |- ( Rel dom F -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) |
| 12 | 11 | exbidv | |- ( Rel dom F -> ( E. z <. x , y >. tpos F z <-> E. z <. y , x >. F z ) ) |
| 13 | opex | |- <. x , y >. e. _V |
|
| 14 | 13 | eldm | |- ( <. x , y >. e. dom tpos F <-> E. z <. x , y >. tpos F z ) |
| 15 | vex | |- x e. _V |
|
| 16 | vex | |- y e. _V |
|
| 17 | 15 16 | opelcnv | |- ( <. x , y >. e. `' dom F <-> <. y , x >. e. dom F ) |
| 18 | opex | |- <. y , x >. e. _V |
|
| 19 | 18 | eldm | |- ( <. y , x >. e. dom F <-> E. z <. y , x >. F z ) |
| 20 | 17 19 | bitri | |- ( <. x , y >. e. `' dom F <-> E. z <. y , x >. F z ) |
| 21 | 12 14 20 | 3bitr4g | |- ( Rel dom F -> ( <. x , y >. e. dom tpos F <-> <. x , y >. e. `' dom F ) ) |
| 22 | 21 | eqrelrdv2 | |- ( ( ( Rel dom tpos F /\ Rel `' dom F ) /\ Rel dom F ) -> dom tpos F = `' dom F ) |
| 23 | 8 22 | mpancom | |- ( Rel dom F -> dom tpos F = `' dom F ) |