This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brtpos | |- ( C e. V -> ( <. A , B >. tpos F C <-> <. B , A >. F C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos2 | |- ( C e. V -> ( <. A , B >. tpos F C <-> ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ U. `' { <. A , B >. } F C ) ) ) |
|
| 2 | 1 | adantr | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. A , B >. tpos F C <-> ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ U. `' { <. A , B >. } F C ) ) ) |
| 3 | opex | |- <. B , A >. e. _V |
|
| 4 | breldmg | |- ( ( <. B , A >. e. _V /\ C e. V /\ <. B , A >. F C ) -> <. B , A >. e. dom F ) |
|
| 5 | 4 | 3expia | |- ( ( <. B , A >. e. _V /\ C e. V ) -> ( <. B , A >. F C -> <. B , A >. e. dom F ) ) |
| 6 | 3 5 | mpan | |- ( C e. V -> ( <. B , A >. F C -> <. B , A >. e. dom F ) ) |
| 7 | 6 | adantr | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. B , A >. F C -> <. B , A >. e. dom F ) ) |
| 8 | opelcnvg | |- ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. e. `' dom F <-> <. B , A >. e. dom F ) ) |
|
| 9 | 8 | adantl | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. A , B >. e. `' dom F <-> <. B , A >. e. dom F ) ) |
| 10 | 7 9 | sylibrd | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. B , A >. F C -> <. A , B >. e. `' dom F ) ) |
| 11 | elun1 | |- ( <. A , B >. e. `' dom F -> <. A , B >. e. ( `' dom F u. { (/) } ) ) |
|
| 12 | 10 11 | syl6 | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. B , A >. F C -> <. A , B >. e. ( `' dom F u. { (/) } ) ) ) |
| 13 | 12 | pm4.71rd | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. B , A >. F C <-> ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ <. B , A >. F C ) ) ) |
| 14 | opswap | |- U. `' { <. A , B >. } = <. B , A >. |
|
| 15 | 14 | breq1i | |- ( U. `' { <. A , B >. } F C <-> <. B , A >. F C ) |
| 16 | 15 | anbi2i | |- ( ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ U. `' { <. A , B >. } F C ) <-> ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ <. B , A >. F C ) ) |
| 17 | 13 16 | bitr4di | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. B , A >. F C <-> ( <. A , B >. e. ( `' dom F u. { (/) } ) /\ U. `' { <. A , B >. } F C ) ) ) |
| 18 | 2 17 | bitr4d | |- ( ( C e. V /\ ( A e. _V /\ B e. _V ) ) -> ( <. A , B >. tpos F C <-> <. B , A >. F C ) ) |
| 19 | 18 | ex | |- ( C e. V -> ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. tpos F C <-> <. B , A >. F C ) ) ) |
| 20 | brtpos0 | |- ( C e. V -> ( (/) tpos F C <-> (/) F C ) ) |
|
| 21 | opprc | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
|
| 22 | 21 | breq1d | |- ( -. ( A e. _V /\ B e. _V ) -> ( <. A , B >. tpos F C <-> (/) tpos F C ) ) |
| 23 | ancom | |- ( ( A e. _V /\ B e. _V ) <-> ( B e. _V /\ A e. _V ) ) |
|
| 24 | opprc | |- ( -. ( B e. _V /\ A e. _V ) -> <. B , A >. = (/) ) |
|
| 25 | 24 | breq1d | |- ( -. ( B e. _V /\ A e. _V ) -> ( <. B , A >. F C <-> (/) F C ) ) |
| 26 | 23 25 | sylnbi | |- ( -. ( A e. _V /\ B e. _V ) -> ( <. B , A >. F C <-> (/) F C ) ) |
| 27 | 22 26 | bibi12d | |- ( -. ( A e. _V /\ B e. _V ) -> ( ( <. A , B >. tpos F C <-> <. B , A >. F C ) <-> ( (/) tpos F C <-> (/) F C ) ) ) |
| 28 | 20 27 | syl5ibrcom | |- ( C e. V -> ( -. ( A e. _V /\ B e. _V ) -> ( <. A , B >. tpos F C <-> <. B , A >. F C ) ) ) |
| 29 | 19 28 | pm2.61d | |- ( C e. V -> ( <. A , B >. tpos F C <-> <. B , A >. F C ) ) |