This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rntpos | ⊢ ( Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑧 ∈ V | |
| 2 | 1 | elrn | ⊢ ( 𝑧 ∈ ran tpos 𝐹 ↔ ∃ 𝑤 𝑤 tpos 𝐹 𝑧 ) |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | 3 1 | breldm | ⊢ ( 𝑤 tpos 𝐹 𝑧 → 𝑤 ∈ dom tpos 𝐹 ) |
| 5 | dmtpos | ⊢ ( Rel dom 𝐹 → dom tpos 𝐹 = ◡ dom 𝐹 ) | |
| 6 | 5 | eleq2d | ⊢ ( Rel dom 𝐹 → ( 𝑤 ∈ dom tpos 𝐹 ↔ 𝑤 ∈ ◡ dom 𝐹 ) ) |
| 7 | 4 6 | imbitrid | ⊢ ( Rel dom 𝐹 → ( 𝑤 tpos 𝐹 𝑧 → 𝑤 ∈ ◡ dom 𝐹 ) ) |
| 8 | relcnv | ⊢ Rel ◡ dom 𝐹 | |
| 9 | elrel | ⊢ ( ( Rel ◡ dom 𝐹 ∧ 𝑤 ∈ ◡ dom 𝐹 ) → ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑤 ∈ ◡ dom 𝐹 → ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) |
| 11 | 7 10 | syl6 | ⊢ ( Rel dom 𝐹 → ( 𝑤 tpos 𝐹 𝑧 → ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) ) |
| 12 | breq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 tpos 𝐹 𝑧 ↔ 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ) ) | |
| 13 | brtpos | ⊢ ( 𝑧 ∈ V → ( 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) | |
| 14 | 13 | elv | ⊢ ( 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) |
| 15 | 12 14 | bitrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) |
| 16 | opex | ⊢ 〈 𝑦 , 𝑥 〉 ∈ V | |
| 17 | 16 1 | brelrn | ⊢ ( 〈 𝑦 , 𝑥 〉 𝐹 𝑧 → 𝑧 ∈ ran 𝐹 ) |
| 18 | 15 17 | biimtrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 tpos 𝐹 𝑧 → 𝑧 ∈ ran 𝐹 ) ) |
| 19 | 18 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 tpos 𝐹 𝑧 → 𝑧 ∈ ran 𝐹 ) ) |
| 20 | 11 19 | syli | ⊢ ( Rel dom 𝐹 → ( 𝑤 tpos 𝐹 𝑧 → 𝑧 ∈ ran 𝐹 ) ) |
| 21 | 20 | exlimdv | ⊢ ( Rel dom 𝐹 → ( ∃ 𝑤 𝑤 tpos 𝐹 𝑧 → 𝑧 ∈ ran 𝐹 ) ) |
| 22 | 2 21 | biimtrid | ⊢ ( Rel dom 𝐹 → ( 𝑧 ∈ ran tpos 𝐹 → 𝑧 ∈ ran 𝐹 ) ) |
| 23 | 1 | elrn | ⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 𝑤 𝐹 𝑧 ) |
| 24 | 3 1 | breldm | ⊢ ( 𝑤 𝐹 𝑧 → 𝑤 ∈ dom 𝐹 ) |
| 25 | elrel | ⊢ ( ( Rel dom 𝐹 ∧ 𝑤 ∈ dom 𝐹 ) → ∃ 𝑦 ∃ 𝑥 𝑤 = 〈 𝑦 , 𝑥 〉 ) | |
| 26 | 25 | ex | ⊢ ( Rel dom 𝐹 → ( 𝑤 ∈ dom 𝐹 → ∃ 𝑦 ∃ 𝑥 𝑤 = 〈 𝑦 , 𝑥 〉 ) ) |
| 27 | 24 26 | syl5 | ⊢ ( Rel dom 𝐹 → ( 𝑤 𝐹 𝑧 → ∃ 𝑦 ∃ 𝑥 𝑤 = 〈 𝑦 , 𝑥 〉 ) ) |
| 28 | breq1 | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 𝑤 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) | |
| 29 | 28 14 | bitr4di | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 𝑤 𝐹 𝑧 ↔ 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ) ) |
| 30 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 31 | 30 1 | brelrn | ⊢ ( 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 → 𝑧 ∈ ran tpos 𝐹 ) |
| 32 | 29 31 | biimtrdi | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 𝑤 𝐹 𝑧 → 𝑧 ∈ ran tpos 𝐹 ) ) |
| 33 | 32 | exlimivv | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 𝑤 𝐹 𝑧 → 𝑧 ∈ ran tpos 𝐹 ) ) |
| 34 | 27 33 | syli | ⊢ ( Rel dom 𝐹 → ( 𝑤 𝐹 𝑧 → 𝑧 ∈ ran tpos 𝐹 ) ) |
| 35 | 34 | exlimdv | ⊢ ( Rel dom 𝐹 → ( ∃ 𝑤 𝑤 𝐹 𝑧 → 𝑧 ∈ ran tpos 𝐹 ) ) |
| 36 | 23 35 | biimtrid | ⊢ ( Rel dom 𝐹 → ( 𝑧 ∈ ran 𝐹 → 𝑧 ∈ ran tpos 𝐹 ) ) |
| 37 | 22 36 | impbid | ⊢ ( Rel dom 𝐹 → ( 𝑧 ∈ ran tpos 𝐹 ↔ 𝑧 ∈ ran 𝐹 ) ) |
| 38 | 37 | eqrdv | ⊢ ( Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹 ) |