This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnrhmsubrg | |- ( F e. ( M RingHom N ) -> ran F e. ( SubRing ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 2 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 3 | 1 2 | rhmf | |- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 4 | 3 | ffnd | |- ( F e. ( M RingHom N ) -> F Fn ( Base ` M ) ) |
| 5 | fnima | |- ( F Fn ( Base ` M ) -> ( F " ( Base ` M ) ) = ran F ) |
|
| 6 | 4 5 | syl | |- ( F e. ( M RingHom N ) -> ( F " ( Base ` M ) ) = ran F ) |
| 7 | rhmrcl1 | |- ( F e. ( M RingHom N ) -> M e. Ring ) |
|
| 8 | 1 | subrgid | |- ( M e. Ring -> ( Base ` M ) e. ( SubRing ` M ) ) |
| 9 | 7 8 | syl | |- ( F e. ( M RingHom N ) -> ( Base ` M ) e. ( SubRing ` M ) ) |
| 10 | rhmima | |- ( ( F e. ( M RingHom N ) /\ ( Base ` M ) e. ( SubRing ` M ) ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
|
| 11 | 9 10 | mpdan | |- ( F e. ( M RingHom N ) -> ( F " ( Base ` M ) ) e. ( SubRing ` N ) ) |
| 12 | 6 11 | eqeltrrd | |- ( F e. ( M RingHom N ) -> ran F e. ( SubRing ` N ) ) |