This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| rngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| rngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| rngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | rngpropd | |- ( ph -> ( K e. Rng <-> L e. Rng ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | rngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | rngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | rngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | simpll | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ph ) |
|
| 6 | simprll | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> u e. B ) |
|
| 7 | simplrl | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> K e. Abel ) |
|
| 8 | simprlr | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> v e. B ) |
|
| 9 | 1 | ad2antrr | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> B = ( Base ` K ) ) |
| 10 | 8 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> v e. ( Base ` K ) ) |
| 11 | simprr | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> w e. B ) |
|
| 12 | 11 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> w e. ( Base ` K ) ) |
| 13 | ablgrp | |- ( K e. Abel -> K e. Grp ) |
|
| 14 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 15 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 16 | 14 15 | grpcl | |- ( ( K e. Grp /\ v e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( v ( +g ` K ) w ) e. ( Base ` K ) ) |
| 17 | 13 16 | syl3an1 | |- ( ( K e. Abel /\ v e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( v ( +g ` K ) w ) e. ( Base ` K ) ) |
| 18 | 7 10 12 17 | syl3anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) e. ( Base ` K ) ) |
| 19 | 18 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) e. B ) |
| 20 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ ( v ( +g ` K ) w ) e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` K ) w ) ) ) |
| 21 | 5 6 19 20 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` K ) w ) ) ) |
| 22 | 3 | oveqrspc2v | |- ( ( ph /\ ( v e. B /\ w e. B ) ) -> ( v ( +g ` K ) w ) = ( v ( +g ` L ) w ) ) |
| 23 | 5 8 11 22 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) = ( v ( +g ` L ) w ) ) |
| 24 | 23 | oveq2d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` L ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` L ) w ) ) ) |
| 25 | 21 24 | eqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` L ) w ) ) ) |
| 26 | simplrr | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( mulGrp ` K ) e. Smgrp ) |
|
| 27 | 6 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> u e. ( Base ` K ) ) |
| 28 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 29 | 28 14 | mgpbas | |- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 30 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 31 | 28 30 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 32 | 29 31 | sgrpcl | |- ( ( ( mulGrp ` K ) e. Smgrp /\ u e. ( Base ` K ) /\ v e. ( Base ` K ) ) -> ( u ( .r ` K ) v ) e. ( Base ` K ) ) |
| 33 | 26 27 10 32 | syl3anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) e. ( Base ` K ) ) |
| 34 | 33 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) e. B ) |
| 35 | 29 31 | sgrpcl | |- ( ( ( mulGrp ` K ) e. Smgrp /\ u e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( u ( .r ` K ) w ) e. ( Base ` K ) ) |
| 36 | 26 27 12 35 | syl3anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) e. ( Base ` K ) ) |
| 37 | 36 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) e. B ) |
| 38 | 3 | oveqrspc2v | |- ( ( ph /\ ( ( u ( .r ` K ) v ) e. B /\ ( u ( .r ` K ) w ) e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) ) |
| 39 | 5 34 37 38 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) ) |
| 40 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u ( .r ` K ) v ) = ( u ( .r ` L ) v ) ) |
| 41 | 40 | ad2ant2r | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) = ( u ( .r ` L ) v ) ) |
| 42 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ w e. B ) ) -> ( u ( .r ` K ) w ) = ( u ( .r ` L ) w ) ) |
| 43 | 5 6 11 42 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) = ( u ( .r ` L ) w ) ) |
| 44 | 41 43 | oveq12d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) |
| 45 | 39 44 | eqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) |
| 46 | 25 45 | eqeq12d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) <-> ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) ) |
| 47 | 14 15 | grpcl | |- ( ( K e. Grp /\ u e. ( Base ` K ) /\ v e. ( Base ` K ) ) -> ( u ( +g ` K ) v ) e. ( Base ` K ) ) |
| 48 | 13 47 | syl3an1 | |- ( ( K e. Abel /\ u e. ( Base ` K ) /\ v e. ( Base ` K ) ) -> ( u ( +g ` K ) v ) e. ( Base ` K ) ) |
| 49 | 7 27 10 48 | syl3anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) e. ( Base ` K ) ) |
| 50 | 49 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) e. B ) |
| 51 | 4 | oveqrspc2v | |- ( ( ph /\ ( ( u ( +g ` K ) v ) e. B /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` K ) v ) ( .r ` L ) w ) ) |
| 52 | 5 50 11 51 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` K ) v ) ( .r ` L ) w ) ) |
| 53 | 3 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u ( +g ` K ) v ) = ( u ( +g ` L ) v ) ) |
| 54 | 53 | ad2ant2r | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) = ( u ( +g ` L ) v ) ) |
| 55 | 54 | oveq1d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` L ) w ) = ( ( u ( +g ` L ) v ) ( .r ` L ) w ) ) |
| 56 | 52 55 | eqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` L ) v ) ( .r ` L ) w ) ) |
| 57 | 29 31 | sgrpcl | |- ( ( ( mulGrp ` K ) e. Smgrp /\ v e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( v ( .r ` K ) w ) e. ( Base ` K ) ) |
| 58 | 26 10 12 57 | syl3anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) e. ( Base ` K ) ) |
| 59 | 58 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) e. B ) |
| 60 | 3 | oveqrspc2v | |- ( ( ph /\ ( ( u ( .r ` K ) w ) e. B /\ ( v ( .r ` K ) w ) e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) ) |
| 61 | 5 37 59 60 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) ) |
| 62 | 4 | oveqrspc2v | |- ( ( ph /\ ( v e. B /\ w e. B ) ) -> ( v ( .r ` K ) w ) = ( v ( .r ` L ) w ) ) |
| 63 | 5 8 11 62 | syl12anc | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) = ( v ( .r ` L ) w ) ) |
| 64 | 43 63 | oveq12d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) |
| 65 | 61 64 | eqtrd | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) |
| 66 | 56 65 | eqeq12d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) <-> ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) |
| 67 | 46 66 | anbi12d | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 68 | 67 | anassrs | |- ( ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( u e. B /\ v e. B ) ) /\ w e. B ) -> ( ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 69 | 68 | ralbidva | |- ( ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) /\ ( u e. B /\ v e. B ) ) -> ( A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 70 | 69 | 2ralbidva | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. B A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 71 | 1 | adantr | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> B = ( Base ` K ) ) |
| 72 | 71 | raleqdv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 73 | 71 72 | raleqbidv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 74 | 71 73 | raleqbidv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 75 | 2 | adantr | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> B = ( Base ` L ) ) |
| 76 | 75 | raleqdv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 77 | 75 76 | raleqbidv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 78 | 75 77 | raleqbidv | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 79 | 70 74 78 | 3bitr3d | |- ( ( ph /\ ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) ) -> ( A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 80 | 79 | pm5.32da | |- ( ph -> ( ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 81 | df-3an | |- ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
|
| 82 | df-3an | |- ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) <-> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp ) /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
|
| 83 | 80 81 82 | 3bitr4g | |- ( ph -> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 84 | 1 2 3 | ablpropd | |- ( ph -> ( K e. Abel <-> L e. Abel ) ) |
| 85 | fvexd | |- ( ph -> ( mulGrp ` K ) e. _V ) |
|
| 86 | fvexd | |- ( ph -> ( mulGrp ` L ) e. _V ) |
|
| 87 | 29 | a1i | |- ( ph -> ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) ) |
| 88 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 89 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 90 | 88 89 | mgpbas | |- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 91 | 2 90 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 92 | 1 91 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` ( mulGrp ` L ) ) ) |
| 93 | 4 | ex | |- ( ph -> ( ( x e. B /\ y e. B ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) ) |
| 94 | 1 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` K ) ) ) |
| 95 | 1 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` K ) ) ) |
| 96 | 94 95 | anbi12d | |- ( ph -> ( ( x e. B /\ y e. B ) <-> ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) ) |
| 97 | 96 | bicomd | |- ( ph -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) <-> ( x e. B /\ y e. B ) ) ) |
| 98 | 31 | a1i | |- ( ph -> ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) ) |
| 99 | 98 | eqcomd | |- ( ph -> ( +g ` ( mulGrp ` K ) ) = ( .r ` K ) ) |
| 100 | 99 | oveqd | |- ( ph -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( .r ` K ) y ) ) |
| 101 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 102 | 88 101 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 103 | 102 | a1i | |- ( ph -> ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) ) |
| 104 | 103 | eqcomd | |- ( ph -> ( +g ` ( mulGrp ` L ) ) = ( .r ` L ) ) |
| 105 | 104 | oveqd | |- ( ph -> ( x ( +g ` ( mulGrp ` L ) ) y ) = ( x ( .r ` L ) y ) ) |
| 106 | 100 105 | eqeq12d | |- ( ph -> ( ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) <-> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) ) |
| 107 | 93 97 106 | 3imtr4d | |- ( ph -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) ) |
| 108 | 107 | imp | |- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 109 | 85 86 87 92 108 | sgrppropd | |- ( ph -> ( ( mulGrp ` K ) e. Smgrp <-> ( mulGrp ` L ) e. Smgrp ) ) |
| 110 | 84 109 | 3anbi12d | |- ( ph -> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) <-> ( L e. Abel /\ ( mulGrp ` L ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 111 | 83 110 | bitrd | |- ( ph -> ( ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( L e. Abel /\ ( mulGrp ` L ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 112 | 14 28 15 30 | isrng | |- ( K e. Rng <-> ( K e. Abel /\ ( mulGrp ` K ) e. Smgrp /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 113 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 114 | 89 88 113 101 | isrng | |- ( L e. Rng <-> ( L e. Abel /\ ( mulGrp ` L ) e. Smgrp /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 115 | 111 112 114 | 3bitr4g | |- ( ph -> ( K e. Rng <-> L e. Rng ) ) |