This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| ablpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| ablpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| Assertion | ablpropd | |- ( ph -> ( K e. Abel <-> L e. Abel ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | ablpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | ablpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | 1 2 3 | grppropd | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 5 | 1 2 3 | cmnpropd | |- ( ph -> ( K e. CMnd <-> L e. CMnd ) ) |
| 6 | 4 5 | anbi12d | |- ( ph -> ( ( K e. Grp /\ K e. CMnd ) <-> ( L e. Grp /\ L e. CMnd ) ) ) |
| 7 | isabl | |- ( K e. Abel <-> ( K e. Grp /\ K e. CMnd ) ) |
|
| 8 | isabl | |- ( L e. Abel <-> ( L e. Grp /\ L e. CMnd ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ph -> ( K e. Abel <-> L e. Abel ) ) |