This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-risc | |- ~=R = { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RingOpsIso s ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crisc | |- ~=R |
|
| 1 | vr | |- r |
|
| 2 | vs | |- s |
|
| 3 | 1 | cv | |- r |
| 4 | crngo | |- RingOps |
|
| 5 | 3 4 | wcel | |- r e. RingOps |
| 6 | 2 | cv | |- s |
| 7 | 6 4 | wcel | |- s e. RingOps |
| 8 | 5 7 | wa | |- ( r e. RingOps /\ s e. RingOps ) |
| 9 | vf | |- f |
|
| 10 | 9 | cv | |- f |
| 11 | crngoiso | |- RingOpsIso |
|
| 12 | 3 6 11 | co | |- ( r RingOpsIso s ) |
| 13 | 10 12 | wcel | |- f e. ( r RingOpsIso s ) |
| 14 | 13 9 | wex | |- E. f f e. ( r RingOpsIso s ) |
| 15 | 8 14 | wa | |- ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RingOpsIso s ) ) |
| 16 | 15 1 2 | copab | |- { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RingOpsIso s ) ) } |
| 17 | 0 16 | wceq | |- ~=R = { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RingOpsIso s ) ) } |