This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngohomco | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1st ` S ) = ( 1st ` S ) |
|
| 2 | eqid | |- ran ( 1st ` S ) = ran ( 1st ` S ) |
|
| 3 | eqid | |- ( 1st ` T ) = ( 1st ` T ) |
|
| 4 | eqid | |- ran ( 1st ` T ) = ran ( 1st ` T ) |
|
| 5 | 1 2 3 4 | rngohomf | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) -> G : ran ( 1st ` S ) --> ran ( 1st ` T ) ) |
| 6 | 5 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> G : ran ( 1st ` S ) --> ran ( 1st ` T ) ) |
| 7 | 6 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> G : ran ( 1st ` S ) --> ran ( 1st ` T ) ) |
| 8 | 7 | adantrl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> G : ran ( 1st ` S ) --> ran ( 1st ` T ) ) |
| 9 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 10 | eqid | |- ran ( 1st ` R ) = ran ( 1st ` R ) |
|
| 11 | 9 10 1 2 | rngohomf | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran ( 1st ` R ) --> ran ( 1st ` S ) ) |
| 12 | 11 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : ran ( 1st ` R ) --> ran ( 1st ` S ) ) |
| 13 | 12 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : ran ( 1st ` R ) --> ran ( 1st ` S ) ) |
| 14 | 13 | adantrr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> F : ran ( 1st ` R ) --> ran ( 1st ` S ) ) |
| 15 | fco | |- ( ( G : ran ( 1st ` S ) --> ran ( 1st ` T ) /\ F : ran ( 1st ` R ) --> ran ( 1st ` S ) ) -> ( G o. F ) : ran ( 1st ` R ) --> ran ( 1st ` T ) ) |
|
| 16 | 8 14 15 | syl2anc | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G o. F ) : ran ( 1st ` R ) --> ran ( 1st ` T ) ) |
| 17 | eqid | |- ( 2nd ` R ) = ( 2nd ` R ) |
|
| 18 | eqid | |- ( GId ` ( 2nd ` R ) ) = ( GId ` ( 2nd ` R ) ) |
|
| 19 | 10 17 18 | rngo1cl | |- ( R e. RingOps -> ( GId ` ( 2nd ` R ) ) e. ran ( 1st ` R ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) -> ( GId ` ( 2nd ` R ) ) e. ran ( 1st ` R ) ) |
| 21 | 20 | adantr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( GId ` ( 2nd ` R ) ) e. ran ( 1st ` R ) ) |
| 22 | fvco3 | |- ( ( F : ran ( 1st ` R ) --> ran ( 1st ` S ) /\ ( GId ` ( 2nd ` R ) ) e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( G ` ( F ` ( GId ` ( 2nd ` R ) ) ) ) ) |
|
| 23 | 14 21 22 | syl2anc | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( G ` ( F ` ( GId ` ( 2nd ` R ) ) ) ) ) |
| 24 | eqid | |- ( 2nd ` S ) = ( 2nd ` S ) |
|
| 25 | eqid | |- ( GId ` ( 2nd ` S ) ) = ( GId ` ( 2nd ` S ) ) |
|
| 26 | 17 18 24 25 | rngohom1 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) ) |
| 27 | 26 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) ) |
| 28 | 27 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) ) |
| 29 | 28 | adantrr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) ) |
| 30 | 29 | fveq2d | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G ` ( F ` ( GId ` ( 2nd ` R ) ) ) ) = ( G ` ( GId ` ( 2nd ` S ) ) ) ) |
| 31 | eqid | |- ( 2nd ` T ) = ( 2nd ` T ) |
|
| 32 | eqid | |- ( GId ` ( 2nd ` T ) ) = ( GId ` ( 2nd ` T ) ) |
|
| 33 | 24 25 31 32 | rngohom1 | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) -> ( G ` ( GId ` ( 2nd ` S ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 34 | 33 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( G ` ( GId ` ( 2nd ` S ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 35 | 34 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( G ` ( GId ` ( 2nd ` S ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 36 | 35 | adantrl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G ` ( GId ` ( 2nd ` S ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 37 | 30 36 | eqtrd | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G ` ( F ` ( GId ` ( 2nd ` R ) ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 38 | 23 37 | eqtrd | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` T ) ) ) |
| 39 | 9 10 1 | rngohomadd | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) |
| 40 | 39 | ex | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) ) |
| 41 | 40 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) ) |
| 42 | 41 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) ) |
| 43 | 42 | imp | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) |
| 44 | 43 | adantlrr | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) |
| 45 | 44 | fveq2d | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( F ` ( x ( 1st ` R ) y ) ) ) = ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) ) |
| 46 | 9 10 1 2 | rngohomcl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ran ( 1st ` R ) ) -> ( F ` x ) e. ran ( 1st ` S ) ) |
| 47 | 9 10 1 2 | rngohomcl | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ y e. ran ( 1st ` R ) ) -> ( F ` y ) e. ran ( 1st ` S ) ) |
| 48 | 46 47 | anim12dan | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) |
| 49 | 48 | ex | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) ) |
| 50 | 49 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) ) |
| 51 | 50 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) ) |
| 52 | 51 | imp | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) |
| 53 | 52 | adantlrr | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) |
| 54 | 1 2 3 | rngohomadd | |- ( ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 55 | 54 | ex | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 56 | 55 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 57 | 56 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 58 | 57 | imp | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 59 | 58 | adantlrl | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 60 | 53 59 | syldan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 61 | 45 60 | eqtrd | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( F ` ( x ( 1st ` R ) y ) ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 62 | 9 10 | rngogcl | |- ( ( R e. RingOps /\ x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) |
| 63 | 62 | 3expb | |- ( ( R e. RingOps /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) |
| 64 | 63 | 3ad2antl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) |
| 65 | 64 | adantlr | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) |
| 66 | fvco3 | |- ( ( F : ran ( 1st ` R ) --> ran ( 1st ` S ) /\ ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( G ` ( F ` ( x ( 1st ` R ) y ) ) ) ) |
|
| 67 | 14 66 | sylan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( G ` ( F ` ( x ( 1st ` R ) y ) ) ) ) |
| 68 | 65 67 | syldan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( G ` ( F ` ( x ( 1st ` R ) y ) ) ) ) |
| 69 | fvco3 | |- ( ( F : ran ( 1st ` R ) --> ran ( 1st ` S ) /\ x e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
|
| 70 | 14 69 | sylan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ x e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 71 | fvco3 | |- ( ( F : ran ( 1st ` R ) --> ran ( 1st ` S ) /\ y e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) |
|
| 72 | 14 71 | sylan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ y e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) |
| 73 | 70 72 | anim12dan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) /\ ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) ) |
| 74 | oveq12 | |- ( ( ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) /\ ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) -> ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
|
| 75 | 73 74 | syl | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) = ( ( G ` ( F ` x ) ) ( 1st ` T ) ( G ` ( F ` y ) ) ) ) |
| 76 | 61 68 75 | 3eqtr4d | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) ) |
| 77 | 9 10 17 24 | rngohommul | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) |
| 78 | 77 | ex | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) |
| 79 | 78 | 3expa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) |
| 80 | 79 | 3adantl3 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) |
| 81 | 80 | imp | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) |
| 82 | 81 | adantlrr | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) |
| 83 | 82 | fveq2d | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( F ` ( x ( 2nd ` R ) y ) ) ) = ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) |
| 84 | 1 2 24 31 | rngohommul | |- ( ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 85 | 84 | ex | |- ( ( S e. RingOps /\ T e. RingOps /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 86 | 85 | 3expa | |- ( ( ( S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 87 | 86 | 3adantl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) -> ( ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) ) |
| 88 | 87 | imp | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ G e. ( S RingOpsHom T ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 89 | 88 | adantlrl | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( ( F ` x ) e. ran ( 1st ` S ) /\ ( F ` y ) e. ran ( 1st ` S ) ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 90 | 53 89 | syldan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 91 | 83 90 | eqtrd | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( G ` ( F ` ( x ( 2nd ` R ) y ) ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 92 | 9 17 10 | rngocl | |- ( ( R e. RingOps /\ x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) |
| 93 | 92 | 3expb | |- ( ( R e. RingOps /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) |
| 94 | 93 | 3ad2antl1 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) |
| 95 | 94 | adantlr | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) |
| 96 | fvco3 | |- ( ( F : ran ( 1st ` R ) --> ran ( 1st ` S ) /\ ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( G ` ( F ` ( x ( 2nd ` R ) y ) ) ) ) |
|
| 97 | 14 96 | sylan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x ( 2nd ` R ) y ) e. ran ( 1st ` R ) ) -> ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( G ` ( F ` ( x ( 2nd ` R ) y ) ) ) ) |
| 98 | 95 97 | syldan | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( G ` ( F ` ( x ( 2nd ` R ) y ) ) ) ) |
| 99 | oveq12 | |- ( ( ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) /\ ( ( G o. F ) ` y ) = ( G ` ( F ` y ) ) ) -> ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
|
| 100 | 73 99 | syl | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) = ( ( G ` ( F ` x ) ) ( 2nd ` T ) ( G ` ( F ` y ) ) ) ) |
| 101 | 91 98 100 | 3eqtr4d | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) |
| 102 | 76 101 | jca | |- ( ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) /\ ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) ) |
| 103 | 102 | ralrimivva | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) /\ ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) ) |
| 104 | 9 17 10 18 3 31 4 32 | isrngohom | |- ( ( R e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsHom T ) <-> ( ( G o. F ) : ran ( 1st ` R ) --> ran ( 1st ` T ) /\ ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` T ) ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) /\ ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) ) ) ) |
| 105 | 104 | 3adant2 | |- ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) -> ( ( G o. F ) e. ( R RingOpsHom T ) <-> ( ( G o. F ) : ran ( 1st ` R ) --> ran ( 1st ` T ) /\ ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` T ) ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) /\ ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) ) ) ) |
| 106 | 105 | adantr | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( ( G o. F ) e. ( R RingOpsHom T ) <-> ( ( G o. F ) : ran ( 1st ` R ) --> ran ( 1st ` T ) /\ ( ( G o. F ) ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` T ) ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( ( G o. F ) ` ( x ( 1st ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 1st ` T ) ( ( G o. F ) ` y ) ) /\ ( ( G o. F ) ` ( x ( 2nd ` R ) y ) ) = ( ( ( G o. F ) ` x ) ( 2nd ` T ) ( ( G o. F ) ` y ) ) ) ) ) ) |
| 107 | 16 38 103 106 | mpbir3and | |- ( ( ( R e. RingOps /\ S e. RingOps /\ T e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ G e. ( S RingOpsHom T ) ) ) -> ( G o. F ) e. ( R RingOpsHom T ) ) |