This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a ring isomorphism between R and S ". (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisoval.1 | |- G = ( 1st ` R ) |
|
| rngisoval.2 | |- X = ran G |
||
| rngisoval.3 | |- J = ( 1st ` S ) |
||
| rngisoval.4 | |- Y = ran J |
||
| Assertion | isrngoiso | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | |- G = ( 1st ` R ) |
|
| 2 | rngisoval.2 | |- X = ran G |
|
| 3 | rngisoval.3 | |- J = ( 1st ` S ) |
|
| 4 | rngisoval.4 | |- Y = ran J |
|
| 5 | 1 2 3 4 | rngoisoval | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( R RingOpsIso S ) = { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) |
| 6 | 5 | eleq2d | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) ) |
| 7 | f1oeq1 | |- ( f = F -> ( f : X -1-1-onto-> Y <-> F : X -1-1-onto-> Y ) ) |
|
| 8 | 7 | elrab | |- ( F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) |
| 9 | 6 8 | bitrdi | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) |