This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngoisohom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 2 | eqid | |- ran ( 1st ` R ) = ran ( 1st ` R ) |
|
| 3 | eqid | |- ( 1st ` S ) = ( 1st ` S ) |
|
| 4 | eqid | |- ran ( 1st ` S ) = ran ( 1st ` S ) |
|
| 5 | 1 2 3 4 | isrngoiso | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) ) ) |
| 6 | 5 | simprbda | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |
| 7 | 6 | 3impa | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) |